-
摘要: 深部煤炭資源開采已勢在必行,但隨著開采深度的增加,伴生著熱能的釋放,該熱能作為地熱資源的重要組成部分,是一種不受環境因素影響的可再生清潔能源。深部礦井開采帶來的豐富地熱可作為共生資源進行開采利用。基于此,本文總結了深部礦井地熱資源的發展潛力以及地熱與煤炭資源開采的現狀,論述了深部礦井地熱開發的必要性和可行性,創新了地熱與煤炭資源協同開發的思路,闡述了礦山地熱與煤炭資源協同開發的內涵與科學問題,圍繞深部礦山巖熱和水熱資源開發這一主題,利用煤炭資源開采的采后空間及生產系統,提出了充填埋管采熱、采空區儲水采熱、采動區封閉采熱及深部原位鉆井采熱4種采熱方法,探討了深部礦山地熱探測評價、深部大空間煤基固廢吸熱功能材料、多場環境下采場巖層移動特征及其控制、低品位熱能的高效傳輸及階梯利用和協同開發系統智能監測等技術的研究重點與難點。研究成果將為中國深部礦山地熱與煤炭資源的協同開發提供技術支撐,為深部礦井資源系統開發提供理論與實踐參考,促進我國深部礦井綠色礦山建設與多元經濟型發展。Abstract: Coal resources are non-renewable one-time energy. With the increase in mining depth, thermal energy is released with the exploitation of deep coal resources. It is renewable and clean, unaffected by environmental factors, and is an important part of geothermal resources. The Chinese government attaches great importance to and encourages the development and utilization of clean energy. Therefore, this paper summarizes the development potential of geothermal resources in deep mines and the current situation of geotherm and coal mining, discusses the necessity and feasibility of geothermal development in deep mines, innovates a collaborative mining of geothermal energy and coal resources, and expounds the scientific and technical problems of the coordinated development of geothermal and coal resources in mines. The scientific problems primarily include the distribution characteristics and the supply law of geothermal sources in deep mines, the law of energy conduction and evolution in stopes, and the heat and mass transfer mechanism of low-grade geothermal energy. The technical problems mainly include the optimization method of the system for the coordinated development of geothermal and coal resources in deep mines, the method for the coordinated development of geothermal and coal resources in deep mines, etc. Focusing on the theme of the development of rock heat and hydrothermal resources in deep mines and considering the post-mining space and production system, this paper introduces four heat recovery methods: buried pipe heat recovery method in the backfilled stopes, water storage and heat recovery method in the goaf, heat recovery method in the closed fracture and caving zones, and in-situ drilling for the heat recovery method in deep aquifers. Keys and difficulties of this paper include the detection and evaluation of geothermal energy in deep mines, heat-absorbing functional materials of coal-based solid waste in deep and large spaces, the characteristics and controlling methods of the rock stratum movement in a multi-field environment in mine stopes, efficient transmission and stepped utilization system of low-grade heat energy, and the intelligent monitoring of geothermal energy and coal collaborative mining system. The results of this paper will provide technical support for the collaborative mining of geothermal energy and coal resources in deep mines in China, as well as provide a theoretical and practical reference for the development of a deep mine resources system in China and promote the construction of green mines and multi-economic development of deep mines in China.
-
表 1 中國不同地區部分礦井數量采深分布表
Table 1. Mining depth of mines sampled from different areas in China
Mining depth/m East China Central China North China Northeast China Northwest China Proportion/% Shandong Anhui Jiangsu Henan Hunan Hebei Liaoning Ningxia 800–1000 4 6 1 2 0 1 0 1 35.71 1000–1200 5 2 4 2 1 2 3 1 47.62 Above 1200 1 1 2 1 0 1 1 0 16.67 -
參考文獻
[1] Xie H P, Gao F, Ju Y, et al. Theoretical and technological conception of the fluidization mining for deep coal resources. J China Coal Soc, 2017, 42(3): 547 doi: 10.13225/j.cnki.jccs.2017.0299謝和平, 高峰, 鞠楊, 等. 深地煤炭資源流態化開采理論與技術構想. 煤炭學報, 2017, 42(3):547 doi: 10.13225/j.cnki.jccs.2017.0299 [2] Li Q Y, Liu K, Li X B. Sublevel filling method for a heavy orebody in deep mining based on collaborative stoping. Chin J Eng, 2016, 38(11): 1515李啟月, 劉愷, 李夕兵. 基于協同回采的深部厚大礦體分段充填采礦法. 工程科學學報, 2016, 38(11):1515 [3] Cai M F, Wu Y Q, Li P, et al. Present situation and ideas of green development of coal resources in Ningxia. Chin J Eng, 2022, 44(1): 1蔡美峰, 吳允權, 李鵬, 等. 寧夏地區煤炭資源綠色開發現狀與思路. 工程科學學報, 2022, 44(1):1 [4] He M C, Guo P Y. Deep rock mass thermodynamic effect and temperature control measures. Chin J Rock Mech Eng, 2013, 32(12): 2377何滿潮, 郭平業. 深部巖體熱力學效應及溫控對策. 巖石力學與工程學報, 2013, 32(12):2377 [5] Pang Z H, Hu S B, Wang J Y. A roadmap to geothermal energy development in China. Sci Technol Rev, 2012, 30(32): 18 doi: 10.3981/j.issn.1000-7857.2012.32.001龐忠和, 胡圣標, 汪集旸. 中國地熱能發展路線圖. 科技導報, 2012, 30(32):18 doi: 10.3981/j.issn.1000-7857.2012.32.001 [6] Guan X. Study on Method and Application of Economic Evaluation of Geothermal Resources [Dissertation]. Wuhan: China University of Geosciences, 2014關鋅. 地熱資源經濟評價方法與應用研究[學位論文]. 武漢: 中國地質大學, 2014 [7] Wang J Y, Hu S B, Pang Z H, et al. Evaluation of geothermal resources potential of hot dry rocks in China’s Mainland. Geotherm Energy, 2019(3): 3汪集旸, 胡圣標, 龐忠和, 等. 中國大陸干熱巖地熱資源潛力評價. 地熱能, 2019(3):3 [8] Wang J Y, Pang Z H, Kong Y L, et al. Status and prospects of geothermal clean heating industry in China. Sci Technol Dev, 2020, 16(Suppl 1): 294汪集暘, 龐忠和, 孔彥龍, 等. 我國地熱清潔取暖產業現狀與展望. 科技促進發展, 2020, 16(增刊1): 294 [9] Li Q W, Zheng M Y, Qiao L, et al. Transient heat transfer model of a three-dimensional spiral heat source in an energy pile. Chin J Eng, 2021, 43(11): 1569李慶文, 鄭明陽, 喬蘭, 等. 能源樁三維螺旋線熱源的瞬態傳熱模型. 工程科學學報, 2021, 43(11):1569 [10] Xiang Y L, Yang Y, Yan W R, et al. Current status and prospect of waste heat utilization technologies of return air in coal mines. Coal Qual Technol, 2021, 36(6): 77向艷蕾, 楊允, 閆文瑞, 等. 煤礦回風余熱資源利用技術現狀與展望. 煤質技術, 2021, 36(6):77 [11] Wei Z X, Wang Y H, Zhao C. Application on comprehensive utilization technology of mine waste heat. Coal Sci Technol, 2013, 41(Suppl 2): 376魏忠勛, 王彥洪, 趙川. 礦井余熱綜合利用技術研究與應用. 煤炭科學技術, 2013, 41(增刊2): 376 [12] Wu X H, Li P, Guo Q F, et al. Research progress on the evolution of physical and mechanical properties of thermally damaged rock. Chin J Eng, 2022, 44(5): 827吳星輝, 李鵬, 郭奇峰, 等. 熱損傷巖石物理力學特性演化機制研究進展. 工程科學學報, 2022, 44(5):827 [13] Li W. Current status and development direction of intelligent mining technology for deep coal resources. Coal Sci Technol, 2021, 49(1): 139 doi: 10.13199/j.cnki.cst.2021.01.008李偉. 深部煤炭資源智能化開采技術現狀與發展方向. 煤炭科學技術, 2021, 49(1):139 doi: 10.13199/j.cnki.cst.2021.01.008 [14] Lü Y C, He Z Q, Wang Y W, et al. Mining-induced mechanics behavior in the deep mine with an over-kilometer depth. J China Coal Soc, 2019, 44(5): 1326 doi: 10.13225/j.cnki.jccs.2019.6030呂有廠, 何志強, 王英偉, 等. 超千米深部礦井采動應力顯現規律. 煤炭學報, 2019, 44(5):1326 doi: 10.13225/j.cnki.jccs.2019.6030 [15] Liu J J. Creep Test Study of Thermal Insulated Shotcrete Under Temperature and Humidity Cycling [Dissertation]. Huainan: Anhui University of Science & Technology, 2020劉俊俊. 溫濕循環作用下隔熱噴射混凝土蠕變試驗研究[學位論文]. 淮南: 安徽理工大學, 2020 [16] Xie H P, Gao F, Ju Y, et al. Quantitative definition and investigation of deep mining. J China Coal Soc, 2015, 40(1): 1 doi: 10.13225/j.cnki.jccs.2014.1690謝和平, 高峰, 鞠楊, 等. 深部開采的定量界定與分析. 煤炭學報, 2015, 40(1):1 doi: 10.13225/j.cnki.jccs.2014.1690 [17] Zhang J X, Zhang Q, Ju F, et al. Theory and technique of greening mining integrating mining, separating and backfilling in deep coal resources. J China Coal Soc, 2018, 43(2): 377 doi: 10.13225/j.cnki.jccs.2017.4102張吉雄, 張強, 巨峰, 等. 深部煤炭資源采選充綠色化開采理論與技術. 煤炭學報, 2018, 43(2):377 doi: 10.13225/j.cnki.jccs.2017.4102 [18] Zhang J X, Tu S H, Cao Y J, et al. Coal gangue intelligent separation and backfilling technology and its engineering application in underground coal mine. J China Univ Min Technol, 2021, 50(3): 417 doi: 10.13247/j.cnki.jcumt.001275張吉雄, 屠世浩, 曹亦俊, 等. 煤礦井下煤矸智能分選與充填技術及工程應用. 中國礦業大學學報, 2021, 50(3):417 doi: 10.13247/j.cnki.jcumt.001275 [19] Liu Y D, Huo B J, Xin L Q. Study on mining environment and mechanical behaviors of strata in deep mining. Min Eng, 2009, 7(3): 14 doi: 10.3969/j.issn.1671-8550.2009.03.006劉玉鼎, 霍丙杰, 辛龍泉. 深部開采環境及巖體力學行為研究. 礦業工程, 2009, 7(3):14 doi: 10.3969/j.issn.1671-8550.2009.03.006 [20] Wu J W, Wang G T, Zhai X R, et al. Geothermal geological characteristics and geothermal resources evaluation of Huainan mining area. J China Coal Soc, 2019, 44(8): 2566 doi: 10.13225/j.cnki.jccs.KJ19.0574吳基文, 王廣濤, 翟曉榮, 等. 淮南礦區地熱地質特征與地熱資源評價. 煤炭學報, 2019, 44(8):2566 doi: 10.13225/j.cnki.jccs.KJ19.0574 [21] Jin S Y. Research on power engineering and sustainable development of energy. Sci Technol Ind Parks, 2017(23): 37金帥宇. 能源動力工程及能源可持續發展的研究. 中國高新區, 2017(23):37 [22] Gao X F, Zhang Y J, Huang Y B, et al. Numerical simulation of convective heat transfer characteristics of a rough single fracture in granite. Rock Soil Mech, 2020, 41(5): 1761 doi: 10.16285/j.rsm.2019.0972高雪峰, 張延軍, 黃奕斌, 等. 花崗巖粗糙單裂隙對流換熱特性的數值模擬. 巖土力學, 2020, 41(5):1761 doi: 10.16285/j.rsm.2019.0972 [23] Xue F X. Study on Mine Return Air Heat-mass Transfer and Thermal Efficiency of the Experiment [Dissertation]. Xuzhou: China University of Mining and Technology, 2014薛放心. 礦井回風傳熱傳質及熱能效實驗研究[學位論文]. 徐州: 中國礦業大學, 2014 [24] Liu T Z. Discussion on utilization ways of low-grade heat energy. Low Carbon World, 2018(11): 322 doi: 10.3969/j.issn.2095-2066.2018.11.206劉廷澤. 淺談低品位熱能的利用途徑. 低碳世界, 2018(11):322 doi: 10.3969/j.issn.2095-2066.2018.11.206 [25] Wang P, Chen S E, Chen Z Q, et al. Dynamic response of carbon dioxide diffusion and reaction in porous cementitious back-filling material. J Min Saf Eng, 2019, 36(2): 381 doi: 10.13545/j.cnki.jmse.2019.02.022王鵬, Chen S E, 陳占清, 等. 二氧化碳在多孔水泥充填材料中的擴散與反應動力學響應. 采礦與安全工程學報, 2019, 36(2):381 doi: 10.13545/j.cnki.jmse.2019.02.022 [26] Li T Z. Influence of Thermal Stress on Stability of Surrounding Rock of Deep Roadway [Dissertation]. Qingdao: Shandong University of Science and Technology, 2008李鐵增. 熱應力對深部巷道圍巖穩定性的影響[學位論文]. 青島: 山東科技大學, 2008 [27] Zhang F W, Wang G L, Hou X W, et al. An analysis of the formation of geothermal resources and the effects of groundwater circulation on the wall rock temperature field—Taking the Pingdingshan mining field as an example. Acta Geosicientia Sin, 2000, 21(2): 142 doi: 10.3321/j.issn:1006-3021.2000.02.006張發旺, 王貴玲, 侯新偉, 等. 地下水循環對圍巖溫度場的影響及地熱資源形成分析—以平頂山礦區為例. 地球學報, 2000, 21(2):142 doi: 10.3321/j.issn:1006-3021.2000.02.006 [28] Li T Z, Wang L, Li Y M. Study on coupled transient temperature-thermal stress in deep roadways. J Heilongjiang Univ Sci Technol, 2015, 25(2): 132 doi: 10.3969/j.issn.2095-7262.2015.02.004李鐵增, 王麗, 李玉梅. 深部巷道圍巖瞬態溫度-熱應力的耦合作用. 黑龍江科技大學學報, 2015, 25(2):132 doi: 10.3969/j.issn.2095-7262.2015.02.004 [29] Cao X Q, Zhao H, Yang W W, et al. A combined energy recovery system for comprehensive utilization of both low-grade waste heat and cold energy in LNG. Therm Power Gener, 2014, 43(12): 49 doi: 10.3969/j.issn.1002-3364.2014.12.049曹興起, 趙暉, 楊衛衛, 等. 綜合利用低品位余熱與LNG冷能的復合循環系統. 熱力發電, 2014, 43(12):49 doi: 10.3969/j.issn.1002-3364.2014.12.049 [30] Huang F Y. Analysis and research on utilization of waste heat resources in coal mines. New Technol New Prod China, 2019(15): 56 doi: 10.3969/j.issn.1673-9957.2019.15.035黃方益. 煤礦余熱資源的利用分析研究. 中國新技術新產品, 2019(15):56 doi: 10.3969/j.issn.1673-9957.2019.15.035 [31] Li H Y, Liu J. Current research status, difficulties and new strategy in utilization of low grade heat. Sci Technol Rev, 2010, 28(17): 112李海燕, 劉靜. 低品位余熱利用技術的研究現狀、困境和新策略. 科技導報, 2010, 28(17):112 -