-
摘要: 礦井熱濕風流中儲存有大量低位熱能和水汽,導致井下工作環境惡劣,乏風直排造成了大量資源浪費。因此,礦井通風熱濕提取與資源化利用是解決深井熱害和礦井低碳轉型發展的重要途徑之一。受地面大氣狀態參數和井下熱濕源的影響,井巷熱濕風流參數隨時間變化,實時掌握井巷熱濕風流轉變特征是精準提取礦井風流中低位熱能的關鍵。本文基于熱濕風網實時解算,確定了礦井關鍵熱濕節點分布規律及變化特征;建立了冷凝熱濕提取計算模型,研發了熱濕風流低位冷凝余熱提用技術,形成了制冷–除濕聯合的低位熱能原位利用系統;提出了礦井乏風集中式和關鍵節點分布式熱濕提取與資源化利用方法,并對提熱收水效果進行了實例分析,為礦井低位熱能提取利用和熱害治理提供了理論基礎和建設思路。Abstract: Massive low-grade thermal energy and water vapor are stored in the hot and humid airflow of mines, typically resulting in a poor underground working environment and posing threats to worker safety and health. The direct discharge of exhausted ventilation air causes an enormous waste of resources as well as pollution problems to the surrounding environment. Therefore, the extraction and utilization of mine ventilation heat and humidity have become some of the most important ways to solve thermal damage problems in deep mines, thereby boosting their low-carbon transformation development. Affected by the changes in the surface atmospheric and downhole heat and humidity sources, the hot and humid airflow parameters in mines change with time. Real-time determination of the hot and humid airflow characteristics in mines is key to extracting low-grade thermal energy from the underground environment efficiently. In this paper, the distribution law and variation characteristics of key heat and humidity joints are determined based on the real-time calculation of the hot and humid air network. A calculation model of condensation heat and humidity extraction is established, and the technology of low-grade condensation waste heat extraction from heat and humidity airflow is also developed, which, in composition, forms a low-grade heat in situ utilization system combined with refrigeration and dehumidification. Furthermore, the centralized and distributed thermal and humidity extraction and resource utilization methods of coal mine ventilation are put forward. The effects of heat extraction and water recovery are also analyzed using examples. The results show that around 224 t of moisture is wasted every day in ventilation air emission, whose recycling has economic benefits. Thousands of kilowatts of thermal energy are stored in the ventilation air emission, which can be used as direct heat energy or converted electricity. An approximately linear relationship is revealed between the temperature decrease and theoretical moisture recovery from ventilation air emission, providing a rapid way for engineering estimation. The analysis of the heat recovery shows that heat extraction is favored by high initial temperature and humidity due to high values and efficiencies. The application of heat–moisture recovery in underground nodes can effectively moderate the in situ working environment and simultaneously recover some energy as a supply to running costs. This work provides significant construction ideas and a theoretical basis for the extraction and utilization of low-level thermal energy and heat damage control in mines.
-
表 1 乏風熱回收計算參數表
Table 1. Calculation parameters of heat recovery from exhaust air
Parameter Value Data source Exhaust air temperature / ℃ 28.000 Measured Exhaust air humidity / % 95.000 Measured Exhaust air volume / (m3·s–1) 100.000 Ideal gas assumption Water content in the exhaust air / (g·m–3) 28.584 Given Air proportion in the exhaust air / % 97.706 Calculated Water vapor proportion in the exhaust air / % 2.294 Calculated Specific heat capacity of the air at constant pressure / (kJ·kg–1·K–1) 1.004 Given Air density / (kg·m–3) 1.293 Given Specific heat capacity of water vapor at constant pressure / (kJ·kg–1·K–1) 1.860 Given 表 2 部分通風網絡節點溫濕度
Table 2. Temperature and humidity in some ventilation network nodes
Node No. Temperature /℃ Relative humidity /% Flow volume /(m3·s–1) Flow velocity /(m·s–1) 7 23.40 96.40 16.00 1.07 8 24.00 90.10 16.00 1.07 13 23.50 86.00 9.50 0.79 14 24.00 85.30 9.10 0.76 15 22.90 93.70 16.15 1.35 16 24.20 88.70 16.21 1.35 19 23.70 91.40 18.76 1.56 22 23.50 85.60 32.44 2.70 表 3 部分通風網絡節點空氣含水量
Table 3. Water content in the air at some ventilation network nodes
Node No. 7 8 13 14 15 16 19 22 Water content / (g·m–3) 22.08 21.40 19.82 20.26 20.83 21.32 21.32 21.32 -
參考文獻
[1] National Energy Administration, Ministry of Science and Technology of the People’s Republic of China. Notice on printing and distributing the plan for scientific and technological innovation in the energy field during the 14th five year plan [EB/OL]. Information Disclosure (2021-11-29) [2022-04-19]. http://zfxxgk.nea.gov.cn/2021-11/29/c_1310540453.htm國家能源局科學技術部. 關于印發《“十四五”能源領域科技創新規劃》的通知[EB/OL]. 信息公開 (2021-11-29) [2022-04-19]. http://zfxxgk.nea.gov.cn/2021-11/29/c_1310540453.htm [2] Yuan L. Theoretical analysis and practical application of coal mine cooling in Huainan mining area. J Min Saf Eng, 2007, 24(3): 298 doi: 10.3969/j.issn.1673-3363.2007.03.010袁亮. 淮南礦區礦井降溫研究與實踐. 采礦與安全工程學報, 2007, 24(3):298 doi: 10.3969/j.issn.1673-3363.2007.03.010 [3] Li Z, Zhang D J, Pan L Y, et al. Low-carbon transition of China's energy sector and suggestions with the 'carbon-peak and carbon-neutrality' target. J Chin Soc Power Eng, 2021, 41(11): 905 doi: 10.19805/j.cnki.jcspe.2021.11.001李政, 張東杰, 潘玲穎, 等. “雙碳”目標下我國能源低碳轉型路徑及建議. 動力工程學報, 2021, 41(11):905 doi: 10.19805/j.cnki.jcspe.2021.11.001 [4] Cai M F, Xue D L, Ren F H. Current status and development strategy of metal mines. Chin J Eng, 2019, 41(4): 417蔡美峰, 薛鼎龍, 任奮華. 金屬礦深部開采現狀與發展戰略. 工程科學學報, 2019, 41(4):417 [5] Wang H N, Peng J L, Cheng Z. Ventilation and cooling analysis of high temperature mine. Nonferrous Met Eng, 2013, 3(3): 34 doi: 10.3969/j.issn.2095-1744.2013.03.007王海寧, 彭家蘭, 程哲. 高溫礦井的通風與降溫分析. 有色金屬工程, 2013, 3(3):34 doi: 10.3969/j.issn.2095-1744.2013.03.007 [6] Gao J L, Yang M. Analysis of the factors influencing temperature distribution of surrounding rock and cooled zone radius. China Saf Sci J, 2005, 15(2): 73 doi: 10.3969/j.issn.1003-3033.2005.02.017高建良, 楊明. 巷道圍巖溫度分布及調熱圈半徑的影響因素分析. 中國安全科學學報, 2005, 15(2):73 doi: 10.3969/j.issn.1003-3033.2005.02.017 [7] Lü X Y, Zhao J K. Application of water source heat pump technology in mine system. Energy Conserv Environ Prot, 2010(8): 43呂向陽, 趙建康. 水源熱泵技術在礦井系統中的應用. 節能與環保, 2010(8):43 [8] Zhang Z T. Recovery of Mine Waste Heat of Exhaust Air Heat Pump System was Used to Study [Dissertation]. Xi'an: Xi'an University of Architecture and Technology, 2015張振濤. 利用熱泵系統回收礦井排風余熱的研究[學位論文]. 西安: 西安建筑科技大學, 2015 [9] Li J G, Chen F L, Jiang Z J, et al. Research and application on low enthalpy ventilation air methane waste-heat utilization technology of mine. China Coal, 2015, 41(12): 120 doi: 10.3969/j.issn.1006-530X.2015.12.029李建光, 陳峰雷, 蔣正君, 等. 礦井低焓乏風余熱利用技術研究與應用. 中國煤炭, 2015, 41(12):120 doi: 10.3969/j.issn.1006-530X.2015.12.029 [10] Gao J L, Zhang X B. Study on method of temperature and humidity calculation of airflow in wet airway. China Saf Sci J, 2007, 17(6): 114 doi: 10.3969/j.issn.1003-3033.2007.06.018高建良, 張學博. 潮濕巷道風流溫度及濕度計算方法研究. 中國安全科學學報, 2007, 17(6):114 doi: 10.3969/j.issn.1003-3033.2007.06.018 [11] Mo F, Yu Z M, Wu G Y, et al. Resource utilization and comprehensive utilization of coal mine water. Coal Eng, 2009, 41(6): 103 doi: 10.3969/j.issn.1671-0959.2009.06.040莫樊, 郁鐘銘, 吳桂義, 等. 煤礦礦井水資源化及綜合利用. 煤炭工程, 2009, 41(6):103 doi: 10.3969/j.issn.1671-0959.2009.06.040 [12] Xiong C C, Luo J H, Wei Y, et al. Research on the application of an anti-freezing system at residual heat recovery head of a split-type mine shaft exhaust. Coal Eng, 2020, 52(12): 12熊楚超, 羅景輝, 魏瑩, 等. 分體式礦井排風余熱回收井口防凍系統應用探究. 煤炭工程, 2020, 52(12):12 [13] Gao L. Application of mine waste heat recovery and reuse technology in Liangshuijing coal mine. Chem Enterp Manag, 2021(30): 77高麗. 礦井余熱回收再利用技術在涼水井煤礦的運用. 化工管理, 2021(30):77 [14] Cai M F, Dor J, Chen X S, et al. Development strategy for Co-mining of the deep mineral and geothermal resources. Strateg Study CAE, 2021, 23(6): 43蔡美峰, 多吉, 陳湘生, 等. 深部礦產和地熱資源共采戰略研究. 中國工程科學, 2021, 23(6):43 [15] Chen Q G, Ge Q F, Cao L, et al. Study on thermal environment simulation of ventilation on demand of high altitude mine based on ventsim VisualTM. Energy Sav Nonferrous Metall, 2020, 36(3): 30陳慶剛, 葛啟發, 曹亮, 等. 基于Ventsim VisualTM高海拔礦井按需通風熱模擬研究. 有色冶金節能, 2020, 36(3):30 [16] Wang C. Application Research of Waste Heat Recovery of Lack of Air and Inrush Water in Coal Mine Based on Automation Monitoring Subsystem [Dissertation]. Xuzhou: China University of Mining and Technology, 2020王成. 基于自動化監控子系統對煤礦中乏風及涌水余熱回收的應用研究[學位論文]. 徐州: 中國礦業大學, 2020 [17] Wang J, Huang W, Wang W D. Application and optimization of return air source heat pump system in a mine of Jizhong energy group. Heilongjiang Sci Technol Inf, 2012(7): 103王健, 黃煒, 王衛東. 淺談冀中能源集團某礦回風源熱泵系統的應用與優化. 黑龍江科技信息, 2012(7):103 [18] Liu L J, Wang J M, Ren P Q. Application on return air source heat pump in heat recovery in a coal mine. Appl Energy Technol, 2012(10): 35 doi: 10.3969/j.issn.1009-3230.2012.10.009劉麗娟, 王吉明, 任丕清. 回風源熱泵技術在煤礦的應用與實踐研究. 應用能源技術, 2012(10):35 doi: 10.3969/j.issn.1009-3230.2012.10.009 [19] Wang H. Numerical Simulation Method Research on Heat Dissipation of Surrounding Rock and Prediction of Wind Temperature in High Temperature Coal Mining Face [Dissertation]. Beijing: China University of Mining & Technology, Beijing, 2018王浩. 高溫采煤工作面圍巖散熱及風溫預測數值模擬方法研究[學位論文]. 北京: 中國礦業大學(北京), 2018 [20] Gao J L, Wei P R. Numerical simulation of the thermal environment at working face of diving airway. J China Coal Soc, 2006, 31(2): 201 doi: 10.3321/j.issn:0253-9993.2006.02.015高建良, 魏平儒. 掘進巷道風流熱環境的數值模擬. 煤炭學報, 2006, 31(2):201 doi: 10.3321/j.issn:0253-9993.2006.02.015 [21] Ji J H, Liao Q, Hu Q T, et al. Heat transfer characteristics of driving face in heat harm mine. J China Coal Soc, 2014, 39(4): 692 doi: 10.13225/j.cnki.jccs.2013.0478姬建虎, 廖強, 胡千庭, 等. 熱害礦井掘進工作面換熱特性. 煤炭學報, 2014, 39(4):692 doi: 10.13225/j.cnki.jccs.2013.0478 [22] Chen K Y, Zhou F B, Xia T Q, et al. Ventilation network solution method based on coupling iteration of air state parameters and air quantity. J China Univ Min Technol, 2021, 50(4): 613 doi: 10.13247/j.cnki.jcumt.001307陳開巖, 周福寶, 夏同強, 等. 基于空氣狀態參數與風量耦合迭代的風網解算方法. 中國礦業大學學報, 2021, 50(4):613 doi: 10.13247/j.cnki.jcumt.001307 [23] Zhou X Q, Wu B. Theory and Practice of Mine Fire Disaster Relief. Beijing: China Coal Industry Publishing House, 1996周心權, 吳兵. 礦井火災救災理論與實踐. 北京: 煤炭工業出版社, 1996 [24] Chen K Y. The Theory and Application of Mine Ventilation System Optimization. Xuzhou: China University of Mining & Technology Press, 2003陳開巖. 礦井通風系統優化理論及應用. 徐州: 中國礦業大學出版社, 2003 [25] Zhang S F, Ke J C, Qin Y P. Study on the prediction of air temperature distribution in overall mine ventilation network and a computer program for this purpose. J China Univ Min Technol, 1992, 21(1): 34張素芬, 柯金川, 秦躍平. 礦井全風網風溫預測法及其計算機程序的研究. 中國礦業大學學報, 1992, 21(1):34 [26] Ma H, Gao W, Zhou X H. Study on multi-parameter prediction of mine climate and automatic solution algorithm of ventilation network. J Saf Sci Technol, 2017, 13(11): 110 doi: 10.11731/j.issn.1673-193x.2017.11.018馬恒, 高巍, 周西華. 礦井氣候多參數預測與通風網絡自動解算算法研究. 中國安全生產科學技術, 2017, 13(11):110 doi: 10.11731/j.issn.1673-193x.2017.11.018 [27] Jining Development and Reform Commission. Notice on matters relating to the price of piped natural gas for residential use in Jining City [EB/OL]. Information Disclosure (2022-03-11) [2022-04-19]. http://www.jining.gov.cn/art/2022/3/11/art_33390_2763920.html濟寧市人民政府發展和改革委員會. 濟發改價格〔2019〕201號關于濟寧城區居民生活用管道天然氣價格有關事項的通知[EB/OL]. 信息公開(2022-03-11) [2022-04-19]. http://www.jining.gov.cn/art/2022/3/11/art_33390_2763920.html [28] National Development and Reform Commission. The energy crisis has led to a rise in global electricity prices China's "supply and price stability" effect is obvious [EB/OL]. China Electricity News (2022-01-30) [2022-04-19].https://www.ndrc.gov.cn/xwdt/ztzl/gnjnybg/202201/t20220130_1314263.html中華人民共和國國家發展和改革委員會. 能源危機導致全球電價上漲 中國“保供穩價”效果明顯[EB/OL]. 中國電力報 (2022-01-30) [2022-04-19].https://www.ndrc.gov.cn/xwdt/ztzl/gnjnybg/202201/t20220130_1314263.html [29] International Energy Agency. Gas Market Report Q4-2021 including Global Gas Security Review 2021 [EB/OL]. Information Disclosure (2021-10) [2022-04-19].https://www.iea.org/reports/gas-market-report-q4-2021 [30] Riffat S B, Ma X L. Thermoelectrics: A review of present and potential applications. Appl Therm Eng, 2003, 23(8): 913 doi: 10.1016/S1359-4311(03)00012-7 -