<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于礦?熱共采的深部高溫巖層地下巷道硐室建造技術思考

陳湘生 武賢龍 包小華 崔宏志 宋朝陽 劉志強

陳湘生, 武賢龍, 包小華, 崔宏志, 宋朝陽, 劉志強. 基于礦?熱共采的深部高溫巖層地下巷道硐室建造技術思考[J]. 工程科學學報, 2022, 44(10): 1660-1668. doi: 10.13374/j.issn2095-9389.2022.04.12.006
引用本文: 陳湘生, 武賢龍, 包小華, 崔宏志, 宋朝陽, 劉志強. 基于礦?熱共采的深部高溫巖層地下巷道硐室建造技術思考[J]. 工程科學學報, 2022, 44(10): 1660-1668. doi: 10.13374/j.issn2095-9389.2022.04.12.006
CHEN Xiang-sheng, WU Xian-long, BAO Xiao-hua, CUI Hong-zhi, SONG Chao-yang, LIU Zhi-qiang. Thoughts on roadway and chamber construction technology in deep rock for mineral–geothermal co-mining[J]. Chinese Journal of Engineering, 2022, 44(10): 1660-1668. doi: 10.13374/j.issn2095-9389.2022.04.12.006
Citation: CHEN Xiang-sheng, WU Xian-long, BAO Xiao-hua, CUI Hong-zhi, SONG Chao-yang, LIU Zhi-qiang. Thoughts on roadway and chamber construction technology in deep rock for mineral–geothermal co-mining[J]. Chinese Journal of Engineering, 2022, 44(10): 1660-1668. doi: 10.13374/j.issn2095-9389.2022.04.12.006

基于礦?熱共采的深部高溫巖層地下巷道硐室建造技術思考

doi: 10.13374/j.issn2095-9389.2022.04.12.006
基金項目: 中國工程院重點咨詢研究項目(2019-XZ-16-03);國家自然科學基金資助重大項目(52090084)
詳細信息
    通訊作者:

    E-mail: h.z.cui@szu.edu.cn

  • 中圖分類號: TD801

Thoughts on roadway and chamber construction technology in deep rock for mineral–geothermal co-mining

More Information
  • 摘要: 我國礦產開采逐漸向深部發展,深部礦產和地熱能共采是保障深部資源持續利用的重要手段。深部巷道硐室的建造面臨諸多新的挑戰與技術難題,高溫、高地應力是深部巖層的兩大特點。礦?熱共采模式的發展需首要尋找到應對這兩大難題的技術方案。在分析深部高溫巖層巷道硐室建造的戰略地位及意義的基礎之上,針對深部巷道硐室建造中面臨的熱害問題、圍巖穩定性控制問題總結介紹了現有的技術手段,說明了其在礦?熱共采模式下深部巷道硐室建造中面臨的不足之處,給出了未來的發展方向。礦?熱共采模式下深部巷道硐室的建造應著重解決高溫、高壓下巖石基本物理力學特性不清晰、圍巖穩定性控制技術落后的問題,形成地質精細勘察?優選圍巖降溫及穩定性控制技術?巷道硐室全壽命風險監控的技術體系。

     

  • 圖  1  TSP系統[12]. (a) 幾何示意圖; (b)隧道地震波記錄

    Figure  1.  TSP system [12]: (a) geometric schematic diagram; (b) synthetic tunnel seismic data

    圖  2  熱處理后花崗巖的微觀結構. (a) 300 ℃; (b) 500 ℃; (c) 700 ℃; (d) 900 ℃ [13]

    Figure  2.  Microstructure of granite after heat treatment: (a) 300 ℃; (b) 500 ℃; (c) 700 ℃; (d) 900 ℃[13]

    圖  3  巖石可鉆性預測模型.(a) 基于RES理論的巖石可鉆性綜合預測模型[18]; (b) 基于GA-ANN的巖石可鉆性預測模型[19]

    Figure  3.  Rock drillability prediction model: (a) based on the RES theory [18]; (b) based on GA-ANN [19]

    圖  4  基于開挖的增強型地熱系統(EGS-E)概念[20]

    Figure  4.  Concept of an enhanced geothermal system based on excavation [20]

    圖  5  相變儲能材料. (a)儲?放熱過程; (b)微膠囊的制備[22]

    Figure  5.  Phase-changing energy storage materials: (a) heat storage–exothermic process; (b) preparation of microcapsules [22]

    圖  6  圍巖穩定性控制理論. (a) 聯合支護理論[23]; (b) 松動圈理論[24]; (c) 應力轉移理論[25]

    Figure  6.  Surrounding rock stability control theory: (a) combined support theory [23]; (b) loose circle theory [24]; (c) stress transfer theory [25]

    圖  7  注漿改性對圍巖影響[28]. (a) 圍巖注漿; (b) 圍巖塑性區

    Figure  7.  Effect of grouting modification on surrounding rock [28]: (a) surrounding rock grouting; (b) plastic zone of surrounding rock

    久色视频
  • [1] Xie H P, Wu L X, Zheng D Z. Prediction on the energy consumption and coal demand of China in 2025. J China Coal Soc, 2019, 44(7): 1949 doi: 10.13225/j.cnki.jccs.2019.0585

    謝和平, 吳立新, 鄭德志. 2025年中國能源消費及煤炭需求預測. 煤炭學報, 2019, 44(7):1949 doi: 10.13225/j.cnki.jccs.2019.0585
    [2] Guo Q F, Cai M F, Wu X H, et al. Technological strategies for intelligent mining subject to multifield couplings in deep metal mines toward 2035. Chin J Eng, 2022, 44(4): 476

    郭奇峰, 蔡美峰, 吳星輝, 等. 面向2035年的金屬礦深部多場智能開采發展戰略. 工程科學學報, 2022, 44(4):476
    [3] Zhou H W, Xie H P, Zuo J P. Developments in researches on mechanical behaviors of rocks under the condition of high ground pressure in the depths. Adv Mech, 2005, 35(1): 91 doi: 10.3321/j.issn:1000-0992.2005.01.009

    周宏偉, 謝和平, 左建平. 深部高地應力下巖石力學行為研究進展. 力學進展, 2005, 35(1):91 doi: 10.3321/j.issn:1000-0992.2005.01.009
    [4] Liu L Y, Zhang L, Ji H G. Mechanism analysis of rock damage and failure based on the relation between deep chamber axial variation and in situ stress fields. Chin J Eng, 2022, 44(4): 516

    劉力源, 張樂, 紀洪廣. 深部地下硐室與應力場軸變關系及其圍巖損傷破裂分析. 工程科學學報, 2022, 44(4):516
    [5] Wang S J, Hu J W, Yan J H, et al. Assessment of geothermal resources in petroliferous basins in China. Math Geosci, 2019, 51(3): 271 doi: 10.1007/s11004-019-09786-9
    [6] Cao J C, Zhang N, Wang S Y, et al. Physical model test study on support of super pre-stressed anchor in the mining engineering. Eng Fail Anal, 2020, 118: 104833 doi: 10.1016/j.engfailanal.2020.104833
    [7] Cao J C, Zhang N, Wang S Y, et al. Investigation of mechanical properties for group anchors. Appl Sci, 2021, 11(4): 1521 doi: 10.3390/app11041521
    [8] Zhou J, Li X B, Mitri H S. Evaluation method of rockburst: State-of-the-art literature review. Tunn Undergr Space Technol, 2018, 81: 632 doi: 10.1016/j.tust.2018.08.029
    [9] Fan L, Wang W J, Yuan C, et al. Research on large deformation mechanism of deep roadway with dynamic pressure. Energy Sci Eng, 2020, 8(9): 3348 doi: 10.1002/ese3.672
    [10] Zhao Y, Yang T H, Zhang P H, et al. Inversion of seepage channels based on mining-induced microseismic data. Int J Rock Mech Min Sci, 2020, 126: 104180 doi: 10.1016/j.ijrmms.2019.104180
    [11] Chao J K, Pan R K, Han X F, et al. The effects of thermal-mechanical coupling on the thermal stability of coal. Combust Sci Technol, 2022, 194(3): 491 doi: 10.1080/00102202.2020.1771328
    [12] Jetschny S, Bohlen T, Kurzmann A. Seismic prediction of geological structures ahead of the tunnel using tunnel surface waves. Geophys Prospect, 2011, 59(5): 934
    [13] Lu Y H, Wang S Y, Chen M, et al. Experimental study on mechanical properties of hot dry rock. Chin J Undergr Space Eng, 2020, 16(1): 114

    盧運虎, 王世永, 陳勉, 等. 高溫熱處理共和盆地干熱巖力學特性實驗研究. 地下空間與工程學報, 2020, 16(1):114
    [14] Wang Y, Shao Z L, Luo P D. Experimental study on the influence of heating and rapid cooling treatment on the mechanical properties of marble. Chin Q Mech, 2020, 41(2): 297 doi: 10.15959/j.cnki.0254-0053.2020.02.010

    王用, 邵祖亮, 羅攀登. 高低溫加載對大理巖力學特性影響的試驗研究. 力學季刊, 2020, 41(2):297 doi: 10.15959/j.cnki.0254-0053.2020.02.010
    [15] Xi B P, Wu Y C, Wang S, et al. Experimental study on mechanical properties of granite taken from Gonghe Basin, Qinghai Province after high temperature thermal damage. Chin J Rock Mech Eng, 2020, 39(1): 69

    郤保平, 吳陽春, 王帥, 等. 青海共和盆地花崗巖高溫熱損傷力學特性試驗研究. 巖石力學與工程學報, 2020, 39(1):69
    [16] Schneider J A. Physical Basis of Rock Mechanics. Beijing: Petroleum Industry Press, 1957

    史立涅爾. 巖石力學的物理基礎. 北京: 石油工業出版社, 1957
    [17] Liu X S. Principles of Well Drilling Technology. Beijing: Petroleum Industry Press, 1981

    劉希圣. 鉆井工藝原理. 北京: 石油工業出版社, 1981
    [18] Xu M G, Liu H Y, Wang P, et al. Comprehensive prediciton study on rock drillability based on RES theory. Met Mine, 2022, 547(1): 113 doi: 10.19614/j.cnki.jsks.202201017

    許夢國, 劉紅陽, 王平, 等. 基于RES理論的巖石可鉆性綜合預測研究. 金屬礦山, 2022, 547(1):113 doi: 10.19614/j.cnki.jsks.202201017
    [19] Saemi M, Ahmadi M, Varjani A Y. Design of neural networks using genetic algorithm for the permeability estimation of the reservoir. J Petroleum Sci Eng, 2007, 59(1-2): 97 doi: 10.1016/j.petrol.2007.03.007
    [20] Song J, Tang C N, Kang F C. Synergetic mining mode of deep mineral and geothermal resources. Met Mine, 2020(5): 124

    宋健, 唐春安, 亢方超. 深部礦產與地熱資源協同開采模式. 金屬礦山, 2020(5):124
    [21] Deng H W, Tian X H, Xu Y H. Performance of thermal insulation material for wall rocks in deep mining. Nonferrous Met Eng, 2018, 8(6): 103 doi: 10.3969/j.issn.2095-1744.2018.06.020

    鄧紅衛, 田小慧, 徐宜慧. 深部開采圍巖隔熱材料性能試驗研究. 有色金屬工程, 2018, 8(6):103 doi: 10.3969/j.issn.2095-1744.2018.06.020
    [22] Lv X S, Guo P, Liu H F, et al. Preparation of paraffin-based phase-change microcapsules and application in geopolymer coating. J Coat Technol Res, 2018, 15(4): 867 doi: 10.1007/s11998-018-0071-6
    [23] Wang Z Q, Shi L, Wang P, et al. Influence of lateral structure and combined support system of split-level entries in the thick seam. Arab J Geosci, 2020, 13(19): 1043 doi: 10.1007/s12517-020-06066-3
    [24] Wang R, Liu Y, Deng X H, et al. Analysis on loose circle of surrounding rock of large deformation soft-rock tunnel. Adv Civ Eng, 2020, 2020: 8842976
    [25] Li H, Liu M J, Yang H W, et al. Influence range simulation of loose blasting borehole in the coal-rock mass. Therm Sci, 2019, 23: (3 Part A): 1457
    [26] Kang H P, Lin J, Wu Y Z, et al. Mechanical performances and compatibility of rock bolt components. J China Coal Soc, 2015, 40(1): 11 doi: 10.13225/j.cnki.jccs.2014.1818

    康紅普, 林健, 吳擁政, 等. 錨桿構件力學性能及匹配性. 煤炭學報, 2015, 40(1):11 doi: 10.13225/j.cnki.jccs.2014.1818
    [27] He M C, Gong W L, Wang J, et al. Development of a novel energy-absorbing bolt with extraordinarily large elongation and constant resistance. Int J Rock Mech Min Sci, 2014, 67: 29 doi: 10.1016/j.ijrmms.2014.01.007
    [28] Wang F T, Zhang C, Wei S F, et al. Whole section anchor-grouting reinforcement technology and its application in underground roadways with loose and fractured surrounding rock. Tunn Undergr Space Technol, 2016, 51: 133 doi: 10.1016/j.tust.2015.10.029
    [29] Qin H, Xie X Y, Tang Y, et al. Experimental study on GPR detection of voids inside and behind tunnel linings. J Environ Eng Geophys, 2020, 25(1): 65 doi: 10.2113/JEEG18-085
  • 加載中
圖(7)
計量
  • 文章訪問數:  437
  • HTML全文瀏覽量:  210
  • PDF下載量:  59
  • 被引次數: 0
出版歷程
  • 收稿日期:  2022-04-12
  • 網絡出版日期:  2022-06-07
  • 刊出日期:  2022-10-25

目錄

    /

    返回文章
    返回