Mechanical properties and damage evolution of granite under high temperature thermal shock
-
摘要: 在干熱型地熱資源開發過程中,高溫巖石面臨遇水冷卻引起的熱沖擊損傷問題。為了研究高溫花崗巖在熱沖擊作用后的力學特性和損傷演化規律,開展了25~600 ℃范圍內不同溫度熱沖擊作用下花崗巖試件的單軸壓縮試驗,獲得了熱沖擊花崗巖試件的應力?應變關系;提出了一種考慮初始熱沖擊損傷與加載期間試件微元破裂損傷相結合的熱?力耦合損傷本構模型,并對統計損傷本構模型的相關參數進行了理論求解;考慮熱沖擊損傷引起的孔隙結構劣化效應,引入壓密系數對熱沖擊花崗巖的本構關系進行了修正;通過試驗應力?應變曲線對模型的有效性進行了對比和驗證,討論了溫度水平對熱沖擊花崗巖單軸壓縮損傷演化規律的影響。研究結果表明,隨著熱沖擊溫度的升高,花崗巖試件的初始熱損傷不斷增大,應力?應變曲線具有明顯的非線性壓密階段;引入壓密系數修正的統計損傷本構模型能夠更加準確地表征熱沖擊花崗巖在初始加載階段的非線性壓密特征;在熱沖擊溫度較低時,損傷變量演化曲線上升較為陡峭,隨著熱沖擊溫度的升高,曲線上升速率逐漸變緩并由非線性向線性轉變。Abstract: Hot dry rock (HDR) is an underground rock with high temperatures (usually above 180 °C), low porosity, and low permeability. The extraction of geothermal energy from HDR generally requires the stimulation of man-made reservoirs. In the enhanced geothermal system (EGS) project, high-pressure water is usually injected into the deep HDR reservoir from the injection well, and the artificial fracture network is stimulated via fracking. The ultimate goal is to enhance fluid flow and heat exchange between injection and production wells. During this period, thermal shock induced by the injected cold water, also known as thermal stimulation, leads to thermal fracture of the HDR, which contributes to the formation of fractures near the injection well. However, this process results in a series of rock damage problems to the high-temperature rock mass, such as borehole collapse and microseismicity. To analyze the mechanical properties and damage evolution of high-temperature granite after thermal shock, the uniaxial compression test of granite specimens at different temperatures in the range of 25 °C–600 ℃ was conducted, and the stress–strain relationship of the specimens was obtained. Based on the theory of damage mechanics, a thermal–mechanical coupled damage constitutive model considering the combination of the initial thermal shock damage and the microelement fracture damage during loading was proposed, and the relevant parameters of the statistical damage constitutive model were theoretically solved. Furthermore, given the effect of pore structure deterioration caused by thermal shock, the constitutive relationship of thermal shock granite was modified by introducing a compaction coefficient. The statistical damage constitutive model was also verified by the experimental results. The influence of temperature on the damage evolution of thermal shock granite under uniaxial compression was discussed. Results showed that with the increase in thermal shock temperature, the initial thermal damage of the granite specimen increases continuously, resulting in a nonlinear compaction stage in the stress–strain curve. The statistical damage constitutive model modified by the compaction coefficient can accurately characterize the nonlinear compaction characteristics of thermal shock granite specimens in the initial loading stage. When the thermal shock temperature is low, the damage variable evolution curve rises steeply. However, with the increase in the thermal shock temperature, the increase rate of the curve gradually slows down and changes from nonlinear to linear. The research results not only help elucidate the deterioration process of the mechanical properties of thermal shock granite but also provide important theoretical guidance for the construction of accurate numerical calculation models and engineering scheme demonstrations.
-
Key words:
- geothermal /
- thermal shock /
- granite /
- damage evolution /
- constitutive model
-
表 1 熱沖擊花崗巖試件單軸壓縮統計損傷本構模型參數
Table 1. Parameters of the statistical damage constitutive model of granite specimens after thermal shock under uniaxial compression
Specimen Temperature/℃ Peak strength/MPa Peak strain/% Elastic modulus/GPa Poisson’s ratio m S0 n N-U0 25 235.48 0.43 58.86 0.26 11.95 260.50 200 N-U1 150 230.47 0.41 60.79 0.27 13.20 249.91 100 N-U2 300 217.07 0.50 53.58 0.22 4.67 309.34 5 N-U3 450 184.44 0.67 44.72 0.30 2.06 351.84 0.3 N-U4 600 86.70 1.19 18.79 0.71 1.06 194.58 0.05 -
參考文獻
[1] Lin W J, Wang G L, Shao J L, et al. Distribution and exploration of hot dry rock resources in China: Progress and inspiration. Acta Geol Sin, 2021, 95(5): 1366 doi: 10.3969/j.issn.0001-5717.2021.05.004藺文靜, 王貴玲, 邵景力, 等. 我國干熱巖資源分布及勘探: 進展與啟示. 地質學報, 2021, 95(5):1366 doi: 10.3969/j.issn.0001-5717.2021.05.004 [2] Wang G L, Liu Y G, Zhu X, et al. The status and development trend of geothermal resources in China. Earth Sci Front, 2020, 27(1): 1王貴玲, 劉彥廣, 朱喜, 等. 中國地熱資源現狀及發展趨勢. 地學前緣, 2020, 27(1):1 [3] Lin W J, Liu Z M, Ma F, et al. An estimation of HDR resources in China’s mainland. Acta Geosci Sin, 2012, 33(5): 807 doi: 10.3975/cagsb.2012.05.12藺文靜, 劉志明, 馬峰, 等. 我國陸區干熱巖資源潛力估算. 地球學報, 2012, 33(5):807 doi: 10.3975/cagsb.2012.05.12 [4] Li D W, Wang Y X. Major issues of research and development of hot dry rock geothermal energy. Earth Sci, 2015, 40(11): 1858李德威, 王焰新. 干熱巖地熱能研究與開發的若干重大問題. 地球科學, 2015, 40(11):1858 [5] Gan H N, Wang G L, Lin W J, et al. Research on the occurrence types and genetic models of hot dry rock resources in China. Sci Technol Rev, 2015, 33(19): 22 doi: 10.3981/j.issn.1000-7857.2015.19.002甘浩男, 王貴玲, 藺文靜, 等. 中國干熱巖資源主要賦存類型與成因模式. 科技導報, 2015, 33(19):22 doi: 10.3981/j.issn.1000-7857.2015.19.002 [6] Xu T F, Zhang Y J, Zeng Z F, et al. Technology progress in an enhanced geothermal system (hot dry rock). Sci Technol Rev, 2012, 30(32): 42 doi: 10.3981/j.issn.1000-7857.2012.32.004許天福, 張延軍, 曾昭發, 等. 增強型地熱系統(干熱巖)開發技術進展. 科技導報, 2012, 30(32):42 doi: 10.3981/j.issn.1000-7857.2012.32.004 [7] Liao Z J, Wan T F, Zhang Z G. The enhanced geothermal system(EGS): Huge capacity and difficult exploitation. Earth Sci Front, 2015, 22(1): 335廖志杰, 萬天豐, 張振國. 增強型地熱系統: 潛力大、開發難. 地學前緣, 2015, 22(1):335 [8] Xu T F, Yuan Y L, Jiang Z J, et al. Hot dry rock and enhanced geothermal engineering: International experience and China prospect. J Jilin Univ (Earth Sci Ed) , 2016, 46(4): 1139許天福, 袁益龍, 姜振蛟, 等. 干熱巖資源和增強型地熱工程: 國際經驗和我國展望. 吉林大學學報(地球科學版), 2016, 46(4):1139 [9] Kang F C, Tang C A. Overview of enhanced geothermal system (EGS) based on excavation in China. Earth Sci Front, 2020, 27(1): 185亢方超, 唐春安. 基于開挖的增強型地熱系統概述. 地學前緣, 2020, 27(1):185 [10] Song J, Tang C A, Kang F C. Synergetic mining mode of deep mineral and geothermal resources. Met Mine, 2020(5): 124宋健, 唐春安, 亢方超. 深部礦產與地熱資源協同開采模式. 金屬礦山, 2020(5):124 [11] Cai M F, Dor J, Chen X S, et al. Development strategy for Co-mining of the deep mineral and geothermal resources. Strateg Study CAE, 2021, 23(6): 43蔡美峰, 多吉, 陳湘生, 等. 深部礦產和地熱資源共采戰略研究. 中國工程科學, 2021, 23(6):43 [12] Guo Q F, Cai M F, Wu X H, et al. Technological strategies for intelligent mining subject to multifield couplings in deep metal mines toward 2035. Chin J Eng, 2022, 44(4): 476郭奇峰, 蔡美峰, 吳星輝, 等. 面向2035年的金屬礦深部多場智能開采發展戰略. 工程科學學報, 2022, 44(4):476 [13] Guo Q F, Xi X, Yang S T, et al. Technology strategies to achieve carbon peak and carbon neutrality for China’s metal mines. Int J Miner Metall Mater, 2022, 29(4): 626 doi: 10.1007/s12613-021-2374-3 [14] Wu X H, Cai M F, Ren F H, et al. Evolutions of P-wave velocity and thermal conductivity of granite under different thermal treatments. Chin J Rock Mech Eng, 2022, 41(3): 457 doi: 10.13722/j.cnki.jrme.2021.0532吳星輝, 蔡美峰, 任奮華, 等. 不同熱處理作用下花崗巖縱波波速和導熱能力的演化規律分析. 巖石力學與工程學報, 2022, 41(3):457 doi: 10.13722/j.cnki.jrme.2021.0532 [15] Jia P, Yang Q Y, Liu D Q, et al. Physical and mechanical properties and related microscopic characteristics of high-temperature granite after water-cooling. Rock Soil Mech, 2021, 42(6): 1568賈蓬, 楊其要, 劉冬橋, 等. 高溫花崗巖水冷卻后物理力學特性及微觀破裂特征. 巖土力學, 2021, 42(6):1568 [16] Wan Z J, Zhao Y S, Dong F K, et al. Experimental study on mechanical characteristics of granite under high temperatures and triaxial stresses. Chin J Rock Mech Eng, 2008, 27(1): 72 doi: 10.3321/j.issn:1000-6915.2008.01.011萬志軍, 趙陽升, 董付科, 等. 高溫及三軸應力下花崗巖體力學特性的實驗研究. 巖石力學與工程學報, 2008, 27(1):72 doi: 10.3321/j.issn:1000-6915.2008.01.011 [17] Xu X L, Gao F, Zhang Z Z, et al. Experimental study of the effect of loading rates on mechanical properties of granite at real-time high temperature. Rock Soil Mech, 2015, 36(8): 2184徐小麗, 高峰, 張志鎮, 等. 實時高溫下加載速率對花崗巖力學特性影響的試驗研究. 巖土力學, 2015, 36(8):2184 [18] Xi B P, Zhao Y S. Experimental research on mechanical properties of water-cooled granite under high temperatures within 600 ℃. Chin J Rock Mech Eng, 2010, 29(5): 892郤保平, 趙陽升. 600℃內高溫狀態花崗巖遇水冷卻后力學特性試驗研究. 巖石力學與工程學報, 2010, 29(5):892 [19] Zhu Z N, Tian H, Dong N N, et al. Experimental study of physico-mechanical properties of heat-treated granite by water cooling. Rock Soil Mech, 2018, 39(Suppl 2): 169朱振南, 田紅, 董楠楠, 等. 高溫花崗巖遇水冷卻后物理力學特性試驗研究. 巖土力學, 2018, 39(增刊2): 169 [20] Wu X H, Li P, Guo Q F, et al. Research progress on the evolution of physical and mechanical properties of thermally damaged rock. Chin J Eng, 2022, 44(5): 827吳星輝, 李鵬, 郭奇峰, 等. 熱損傷巖石物理力學特性演化機制研究進展. 工程科學學報, 2022, 44(5):827 [21] Zhao Q, Li E B, Wang Y C, et al. Thermal-mechanical coupling mechanical properties and damage constitutive model of Beishan granite. J Nanjing Tech Univ (Nat Sci Ed) , 2019, 41(6): 792趙齊, 李二兵, 王永超, 等. 北山花崗巖熱-力耦合力學特性及損傷本構模型研究. 南京工業大學學報(自然科學版), 2019, 41(6):792 [22] Zhu Z N, Jiang G S, Tian H, et al. Study on statistical thermal damage constitutive model of rock based on normal distribution. J Central South Univ (Sci Technol) , 2019, 50(6): 1411 doi: 10.11817/j.issn.1672-7207.2019.06.020朱振南, 蔣國盛, 田紅, 等. 基于Normal分布的巖石統計熱損傷本構模型研究. 中南大學學報(自然科學版), 2019, 50(6):1411 doi: 10.11817/j.issn.1672-7207.2019.06.020 [23] Min M. Experimental Study on High Temperature Mechanical Properties of Beishan Granite [Dissertation]. Xuzhou: China University of Mining and Technology, 2019閔明. 北山花崗巖高溫力學特性試驗研究[學位論文]. 徐州: 中國礦業大學, 2019 [24] Jiang H P, Jiang A N, Yang X R. Statistical damage constitutive model of high temperature rock based on Weibull distribution and its verification. Rock Soil Mech, 2021, 42(7): 1894蔣浩鵬, 姜諳男, 楊秀榮. 基于Weibull分布的高溫巖石統計損傷本構模型及其驗證. 巖土力學, 2021, 42(7):1894 [25] Kachanov L M. Introduction to Continuum Damage Mechanics. Dordrecht: Springer Netherlands, 1986 [26] Rabotnov Y N. Paper 68: On the equation of state of creep. Proc Inst Mech Eng Conf Proc, 1963, 178(1): 2 [27] Zhang Q S, Yang G S, Ren J X. New study of damage variable and constitutive equation of rock. Chin J Rock Mech Eng, 2003, 22(1): 30 doi: 10.3321/j.issn:1000-6915.2003.01.005張全勝, 楊更社, 任建喜. 巖石損傷變量及本構方程的新探討. 巖石力學與工程學報, 2003, 22(1):30 doi: 10.3321/j.issn:1000-6915.2003.01.005 [28] Pan J L, Cai M F, Li P, et al. A damage constitutive model of rock-like materials containing a single crack under the action of chemical corrosion and uniaxial compression. J Cent South Univ, 2022, 29(2): 486 doi: 10.1007/s11771-022-4949-1 [29] Pan J L, Gao Z N, Ren F H. Effect of strength criteria on surrounding rock of circular roadway considering strain softening and dilatancy. J China Coal Soc, 2018, 43(12): 3293潘繼良, 高召寧, 任奮華. 考慮應變軟化和擴容的圓形巷道圍巖強度準則效應. 煤炭學報, 2018, 43(12):3293 [30] Pan J L, Guo Q F, Tian L M, et al. Study on rock statistical damage softening constitutive model and its parameters based on the unified strength theory. Min Res Dev, 2019, 39(8): 38潘繼良, 郭奇峰, 田莉梅, 等. 基于統一強度理論的巖石統計損傷軟化本構模型及其參數研究. 礦業研究與開發, 2019, 39(8):38 [31] Liu X S, Ning J G, Tan Y L, et al. Damage constitutive model based on energy dissipation for intact rock subjected to cyclic loading. Int J Rock Mech Min Sci, 2016, 85: 27 doi: 10.1016/j.ijrmms.2016.03.003 -