Experimental study of the enhanced stimulation of a deep carbonate thermal reservoir in the Xiong'an New Area
-
摘要: 碳酸鹽巖熱儲是我國水熱型地熱資源開發的主戰場,具有分布廣、厚度大、易回灌等特點。目前的利用僅局限于碳酸鹽巖熱儲頂部約200 m的強巖溶發育帶,由于深部碳酸鹽巖熱儲滲透性低、非均質性強,無法進行規模化開發利用。針對深部巨厚碳酸鹽巖熱儲高效開發技術難題,采用綜合測井與裂隙成像測井技術優選了目標增產層段,創新使用了水力噴射酸化壓裂熱儲改造技術,該技術具有定點起裂、有效封隔、熱儲深穿透、改造體積大等特點。以雄安新區揭露碳酸鹽巖熱儲層厚度最大的地熱井D22為代表開展了現場熱儲改造試驗,結果顯示,目標層段3024~3174 m涌水量由改造前的4.72 m3·h?1增加到改造后的44.10 m3·h?1,提高了8.3倍;單位涌水量由改造前的0.024 m3·(h·m)?1增加到改造后的0.745 m3·(h·m)?1,提高了30倍;儲層滲透系數由4.4×10?3 m·d?1提高到了146.3×10?3 m·d?1;井口水溫由改造前的60.0 ℃增加到66.5 ℃。試驗研究表明,可通過熱儲改造提高深部巨厚碳酸鹽巖熱儲的開發潛能。Abstract: Geothermal energy, as a clean and renewable resource distributed worldwide, has received extensive focus in recent years. With the improvement in drilling and logging technology, the depth of geothermal exploration has gradually increased. Carbonate reservoirs are presently the main layer for geothermal development and use in China that have the characteristics of wide distribution, large reserves, and easy reinjection. The current use is limited to the strong karst development zone, approximately 200 m at the top of the reservoirs. Because of the low permeability and strong heterogeneity, the deep carbonate geothermal reservoirs cannot be commercially developed. This study aims to solve the key technical problems of efficiently developing deep carbonate geothermal reservoirs with extreme thickness. The target section was selected by analyzing comprehensive logging and fracture imaging logging data. An innovative simulation technology combining hydraulic jetting and acid fracturing is developed, which has the characteristics of fixed-point fracturing, effective sealing, strong penetration, and a large stimulation range. A production enhancement test was conducted for carbonate geothermal wells in the following order: comprehensive logging, imaging logging, casing cementing, perforation, pumping test, small pressure test, hydraulic injection acid fracturing, pumping test (after fracturing), and other construction processes. Comprehensive logging is an effective means to interpret the macroscopic pore and permeability properties of a reservoir and can be used to initially select the target geothermal reservoir. Fracture imaging logging can provide a more intuitive understanding of fracture development and distribution characteristics. The results show that the fracture density of geothermal well D22 does not decrease substantially with increasing depth, and the fracture width tends to decrease with depth clearly. The experimental geothermal well D22, which has the largest thickness of carbonate geothermal reservoir exposed in the Xiong'an New Area, was selected to perform a pilot field test of stimulation. The results show that the water inflow of the target section at 3024–3174 m increased from 4.72 m3·h?1 before stimulation to 44.10 m3·h?1 after stimulation, increasing by 8.3-fold. The unit water inflow increased from 0.024 m3·(h·m)?1 before stimulation to 0.745 m3·(h·m)?1 after stimulation, increasing by 30-fold. The reservoir permeability coefficient increased from 4.4×10?3 m·d?1 to 146.3×10?3 m·d?1. The wellhead water temperature increased from 60.0 °C before stimulation to 66.5 °C after stimulation. Therefore, the development potential of deep and thick carbonate geothermal reservoirs can be substantially improved through the developed stimulation. This research can provide technical support for the large-scale development of geothermal resources in China.
-
Reservoir Location Depth/m Basis
concentration
of HCL/%Acidification
amount/m3Water
inflow before
fracturing/
(m3·d?1)Water
inflow after
fracturing/
(m3·d?1)Capacity
before fracturing/
m3·(d·m)?1Capacity
after fracturing/
m3·(d·m)?1Maximum
instantaneous
pressure/
MPaWater
temperature
before
fracturing/
°CWater
temperature
after
fracturing/
°CCarbonate
(JXW)No. 4, Jingtong, Tongzhou, Beijing 1730–2800 20 130 951 2163 23.80 56.75 6.5 43.5 46 Granite Soults
GPK2, France5270 0.09+0.18 1080 1555 30.24 69.12 160 164 Carbonate
(?)Beijing
YRG ~ 12383
–334931 20 1980 1829 19.36 18.17 16 65 68 Carbonate
( JX )Fuxingmen, Hexi District, Tianjin WR95 1776–1976 20 120 249 2296 21.51 53 78 Carbonate
(?)Taiyuan Xiwenzhuang geothermal field X~3 1500–2500 16–20 700 (400) 528 3120 3.41 67.8 40 55 63 Carbonate
(?)Southwest of Shandong 1310–1500 20 80 240 864 14 35 47 表 2 D22井三開綜合測井解釋結果
Table 2. Interpretation results of comprehensive logging of the third spud in well D22
Layer Initial
depth/ mTerminati-on
depth/mThick-ness/m RT/(Ω·m) SP/mV GR/API AC/
(μs·m?1)Shale content/% Porosity/% Permeability /mD Reservoir classification 20 3000.4 3003.3 2.9 23.02 4.63 29.12 277.82 9 27.16 4004 I 21 3018.5 3021.5 3 52.64 7.16 28.3 179.62 8.55 6.45 0.2 III 22 3021.5 3024.9 3.4 22.33 6.16 34.4 269.91 12.03 25.2 861.7 I 23 3026 3027.8 1.8 68.8 6.36 37.51 180.21 13.93 6.97 0.13 III 24 3027.8 3029.7 1.9 49.11 5.31 44.01 228.93 17.85 15.14 36.62 I 25 3128.7 3132.1 3.4 11.54 8.1 56.47 212.5 28.79 10.45 5 II 26 3133.6 3135.2 1.6 52.19 6.41 28.34 182.56 9.71 3.53 0.1 III 27 3137.5 3139.5 2 10.22 6.05 57.38 182.6 28.98 4.18 0.07 III 28 3156.1 3160.3 4.2 15.16 4.07 25.74 204.14 7.34 11.5 6.21 II 29 3172.3 3175.8 3.5 19.57 4.56 35.73 256.93 12.69 22.69 686 I 30 3179 3181.4 2.4 7554 6.84 7.2 175.22 0 5.76 0.1 III 31 3250.3 3252.7 2.4 1056 9.18 10.6 166.98 2.11 5.1 0.1 III 32 3315.3 3317.4 2.1 72.6 4.19 11.15 169.41 0.51 4.25 0.1 III 33 3378.7 3380.4 1.7 73.43 4.28 11.73 170.42 1.26 4.73 0.1 III 34 3424.2 3427.6 3.4 358.1 5.56 8.26 178.19 0.12 6.25 0.1 III 35 3437.3 3440.4 3.1 362.6 8.9 10.56 195.95 0.43 5.26 0.1 III 36 3456.5 3463.4 6.9 20.63 8.25 57.69 218.92 28.35 12.6 7.97 II 37 3479.4 3481.4 2 1790 13.02 9.59 178.33 0.44 6.57 0.18 III 表 3 熱儲改造前后產能測試結果對比表
Table 3. Comparison of the pumping test before and after reservoir stimulation
Descent Heat hydraulic head/m Dynamic water level/m Depression depth/m Water yield /
(m3·h?1)Specific water yield/(m3·(h·m)?1) Water temperature/℃ Before
stimulation111.2 307.88 196.68 4.72 0.024 60.0 After stimulation S3 101.43 160.66 59.23 44.10 0.745 66.5 S2 136.54 35.11 33.40 0.951 66.0 S1 114.77 13.34 18.90 1.417 60.5 -
參考文獻
[1] Pang Z H, Pang J M, Kong Y L, et al. Large-scale Karst thermal storage identification method and large-scale sustainable mining technology. Sci Technol Dev, 2020, 16(Suppl 1): 299龐忠和, 龐菊梅, 孔彥龍, 等. 大型巖溶熱儲識別方法與規模化可持續開采技術. 科技促進發展, 2020, 16(Suppl 1): 299 [2] Ma F, Wang G L, Zhang W, et al. Structure of geothermal reservoirs and resource potential in the Rongcheng geothermal field in Xiong’an New area. Acta Geol Sin, 2020, 94(7): 1981 doi: 10.3969/j.issn.0001-5717.2020.07.007馬峰, 王貴玲, 張薇, 等. 雄安新區容城地熱田熱儲空間結構及資源潛力. 地質學報, 2020, 94(7):1981 doi: 10.3969/j.issn.0001-5717.2020.07.007 [3] Wu A M, Ma F, Wang G L, et al. A study of deep-seated Karst geothermal reservoir exploration and huge capacity geothermal well parameters in Xiong’an new area. Acta Geosci Sin, 2018, 39(5): 523 doi: 10.3975/cagsb.2018.071104吳愛民, 馬峰, 王貴玲, 等. 雄安新區深部巖溶熱儲探測與高產能地熱井參數研究. 地球學報, 2018, 39(5):523 doi: 10.3975/cagsb.2018.071104 [4] Wang G L, Gao J, Zhang B J, et al. Study on the thermal storage characteristics of the Wumishan Formation and huge capacity geothermal well parameters in the Gaoyang low uplift area of Xiong’an New Area. Acta Geol Sin, 2020, 94(7): 1970 doi: 10.3969/j.issn.0001-5717.2020.07.006王貴玲, 高俊, 張保建, 等. 雄安新區高陽低凸起區霧迷山組熱儲特征與高產能地熱井參數研究. 地質學報, 2020, 94(7):1970 doi: 10.3969/j.issn.0001-5717.2020.07.006 [5] Ma F, Wang G L, Wei S C, et al. Summary of hot research topics in geothermal exploitation in 2018. Sci Technol Rev, 2019, 37(1): 134馬峰, 王貴玲, 魏帥超, 等. 2018年地熱勘探開發熱點回眸. 科技導報, 2019, 37(1):134 [6] Tang S, Zhu W Y, Zhang J C. Production analysis and fracturing parameter optimization of shale gas from Zhongmou Block in southern North China Basin. Chin J Eng, 2020, 42(12): 1573唐帥, 朱維耀, 張金川. 中牟區塊過渡相頁巖氣藏產能分析及壓裂參數優選. 工程科學學報, 2020, 42(12):1573 [7] Zhu W Y, Zhang Q T, Y M, et al. Effect of uneven distribution of proppant in fracture network on exploitation dynamic characteristics. Chin J Eng, 2020, 42(10): 1318朱維耀, 張啟濤, 岳明, 等. 裂縫網絡支撐劑非均勻分布對開采動態規律的影. 工程科學學報, 2020, 42(10):1318 [8] Portier S, Vuataz F D, Nami P, et al. Chemical stimulation techniques for geothermal wells: Experiments on the three-well EGS system at Soultz-sous-Forêts, France. Geothermics, 2009, 38(4): 349 doi: 10.1016/j.geothermics.2009.07.001 [9] ásmundsson R, Pezard P, Sanjuan B, et al. High temperature instruments and methods developed for supercritical geothermal reservoir characterisation and exploitation—The HiTI project. Geothermics, 2014, 49: 90 doi: 10.1016/j.geothermics.2013.07.008 [10] Elders W A, Frieleifsson G ó. The science program of the Iceland deep drilling project (IDDP): A study of supercritical geothermal resources // Proceedings World Geothermal Congress. Bali Indonesia, 2010: 25 [11] Frank E D, Sullivan J L, Wang M Q. Life cycle analysis of geothermal power generation with supercritical carbon dioxide. Environ Res Lett, 2012, 7(3): 034030 doi: 10.1088/1748-9326/7/3/034030 [12] Brown D W. A hot dry rock geothermal energy concept utilizing supercritical CO2 instead of water // Twenty-fifth Workshop on Geothermal Reservoir Engineering. Stanford University, 2000: 233 [13] Cheng W, Jin Y, Chen M, et al. A criterion for identifying hydraulic fractures crossing natural fractures in 3D space. Pet Explor Dev, 2014, 41(3): 336 doi: 10.11698/PED.2014.03.09程萬, 金衍, 陳勉, 等. 三維空間中水力裂縫穿透天然裂縫的判別準則. 石油勘探與開發, 2014, 41(3):336 doi: 10.11698/PED.2014.03.09 [14] Chen M, Zhou J, Jin Y, et al. Experimental study on fracturing features in naturally fractured reservoir. Acta Petrolei Sin, 2008, 29(3): 431 doi: 10.3321/j.issn:0253-2697.2008.03.023陳勉, 周健, 金衍, 等. 隨機裂縫性儲層壓裂特征實驗研究. 石油學報, 2008, 29(3):431 doi: 10.3321/j.issn:0253-2697.2008.03.023 [15] Gu H R, Weng X W, Lund J, et al. Hydraulic fracture crossing natural fracture at nonorthogonal angles, A criterion, its validation. SPE Prod Oper, 2012, 27(1): 139984 [16] Li W, Kong X J, Yuan L J, et al. Study on geothermal acid fracturing increasing reinjection test in Tongzhou area, Beijing. Urban Geol, 2019, 14(4): 43 doi: 10.3969/j.issn.1007-1903.2019.04.008李文, 孔祥軍, 袁利娟, 等. 北京通州地區地熱井酸化壓裂增灌試驗研究. 城市地質, 2019, 14(4):43 doi: 10.3969/j.issn.1007-1903.2019.04.008 [17] Yang M, Lin T Y, Liu Q, et al. The study on geothermal acid fracturing stimulation technique in a typical area in Beijing. Urban Geol, 2018, 13(4): 14 doi: 10.3969/j.issn.1007-1903.2018.04.003楊淼, 林天懿, 劉慶, 等. 北京某典型地區地熱井酸化壓裂增產技術研究. 城市地質, 2018, 13(4):14 doi: 10.3969/j.issn.1007-1903.2018.04.003 [18] Liu M L, Zhuang Y Q, Zhou C, et al. Application of chemical stimulation technology in enhanced geothermal system: Theory, practice and expectation. J Earth Sci Environ, 2016, 38(2): 267 doi: 10.3969/j.issn.1672-6561.2016.02.014劉明亮, 莊亞芹, 周超, 等. 化學刺激技術在增強型地熱系統中的應用: 理論、實踐與展望. 地球科學與環境學報, 2016, 38(2):267 doi: 10.3969/j.issn.1672-6561.2016.02.014 [19] Ke, B L, Zhao L H, Wen Z T. Application of perforation and acidizing fracturing technology in geothermal well washing. Explor Eng Rock Soil Drill Tunneling, 2007, 34(8): 17柯柏林, 趙連海, 溫澤濤. 射孔和酸化壓裂技術在地熱井洗井中的應用. 探礦工程(巖土鉆掘工程), 2007, 34(8):17 [20] Zhai H Z, Su Z, Wu N Y. Development experiences of the soultz enhanced geothermal systems and inspirations for geothermal development of China. Adv New Renewable Energy, 2014, 2(4): 286 doi: 10.3969/j.issn.2095-560X.2014.04.008翟海珍, 蘇正, 吳能友. 蘇爾士增強型地熱系統的開發經驗及對我國地熱開發的啟示. 新能源進展, 2014, 2(4):286 doi: 10.3969/j.issn.2095-560X.2014.04.008 [21] Xu Y P. Acid Fracturing Technology and Its Application in Geothermal Development of Carbonate Rocks [Dissertation]. Beijing: China University of Geosciences (Beijing), 2014徐云鵬. 酸化壓裂工藝在碳酸鹽巖層地熱開發中的應用[學位論文]. 北京: 中國地質大學(北京), 2014 [22] Xu Y P. Application of acidizing stimulation technology for geothermal development in carbonate rocks. Explor Eng Rock Soil Drill Tunneling, 2015, 42(11): 31徐云鵬. 酸化增產工藝在碳酸鹽巖層地熱開發中的應用. 探礦工程(巖土鉆掘工程), 2015, 42(11):31 [23] Lv D C. Application of acidizing technology in geothermal well stimulation. China Pet Chem Stand Qual, 2013, 33(22): 156 doi: 10.3969/j.issn.1673-4076.2013.22.156呂殿臣. 酸化壓裂技術在地熱井增產中的應用. 中國石油和化工標準與質量, 2013, 33(22):156 doi: 10.3969/j.issn.1673-4076.2013.22.156 [24] Wang L C, Li M L, Cheng W Q, et al. Application of acidifying & fracturing technology to carbonate rock reservoir. Hydrogeol Eng Geol, 2010, 37(5): 128 doi: 10.3969/j.issn.1000-3665.2010.05.024王連成, 李明朗, 程萬慶, 等. 酸化壓裂方法在碳酸鹽巖熱儲層中的應用. 水文地質工程地質, 2010, 37(5):128 doi: 10.3969/j.issn.1000-3665.2010.05.024 [25] Wang P, Zong Z H, Li Z J, et al. Application analysis on acidification and crushing technology for increasing geothermal yield. Explor Eng Rock Soil Drill Tunneling, 2011, 38(10): 30王平, 宗振海, 李振杰, 等. 酸化液壓技術在地熱增產中的應用分析. 探礦工程(巖土鉆掘工程), 2011, 38(10):30 [26] Li Y Z, Tian J Z. Application of acid well Flushing in 2 wells of Niutuo geothermal field in Hebei. Explor Eng Rock Soil Drill Tunneling, 2009, 36(6): 16李硯智, 田京振. 酸化洗井在河北牛駝鎮地熱田兩口井中的應用. 探礦工程(巖土鉆掘工程), 2009, 36(6):16 [27] Lin T Y, Ke B L, Yang M, et al. The acid-fracturing stimulation mechanism and application in hydrothermal-carbonate geothermal reservoir. Urban Geol, 2018, 13(3): 21 doi: 10.3969/j.issn.1007-1903.2018.03.003林天懿, 柯柏林, 楊淼, 等. 碳酸鹽巖熱儲酸化壓裂增產機理研究及應用. 城市地質, 2018, 13(3):21 doi: 10.3969/j.issn.1007-1903.2018.03.003 [28] Ji Y H. Application of acid fracturing technology in geothermal well of carbonate rock in southwest of Shandong Province. Site Invest Sci Technol, 2017(4): 62 doi: 10.3969/j.issn.1001-3946.2017.04.016姬永紅. 酸化壓裂技術在魯西南碳酸鹽巖地熱井中的應用. 勘察科學技術, 2017(4):62 doi: 10.3969/j.issn.1001-3946.2017.04.016 [29] Li G S, Huang Z W, Zhang D B, et al. Block-removing technus using high pressure water jets combined with acidization. Acta Petrolei Sin, 2005, 26(1): 96 doi: 10.3321/j.issn:0253-2697.2005.01.020李根生, 黃中偉, 張德斌, 等. 高壓水射流與化學劑復合解堵工藝的機理及應用. 石油學報, 2005, 26(1):96 doi: 10.3321/j.issn:0253-2697.2005.01.020 [30] Ke B L, Lin T Y, Liu Q. Research and Application of Key Technologies for Carbonated Hydrothermal Geothermal System Acid-fracturing to Increase Production. Beijing: China Land Press, 2019柯柏林, 林天懿, 劉慶. 碳酸鹽巖水熱型地熱系統酸化壓裂增產關鍵技術研究與應用. 北京: 中國大地出版社, 2019 [31] Tian S Z, Li G S, Huang Z W, et al. Research on hydrajet fracturing mechanisms and technologies. Oil Drill Prod Technol, 2008, 30(1): 58 doi: 10.3969/j.issn.1000-7393.2008.01.016田守嶒, 李根生, 黃中偉, 等. 水力噴射壓裂機理與技術研究進展. 石油鉆采工藝, 2008, 30(1):58 doi: 10.3969/j.issn.1000-7393.2008.01.016 [32] Li G S, Huang Z W, Tian S Z, et al. Theory and Application of Hydra-jet Fracturing. Beijing: Science Press, 2011李根生, 黃中偉, 田守嶒, 等. 水力噴射壓裂理論與應用. 北京: 科學出版社, 2011 [33] Huang Z W, Li G S, Wang Y Z, et al. Hydra-jet fracturing applied in a well with three-layer casings. Oil Drill Prod Technol, 2012, 34(5): 122 doi: 10.3969/j.issn.1000-7393.2012.05.032黃中偉, 李根生, 汪永章, 等. 水力噴射壓裂技術在3層套管井中的應用. 石油鉆采工藝, 2012, 34(5):122 doi: 10.3969/j.issn.1000-7393.2012.05.032 [34] Huang Z W, Li G S, Tian S Z, et al. Wear investigation of downhole tools applied to hydra-jet multistage fracturing. J Chongqing Univ, 2014, 37(5): 77 doi: 10.11835/j.issn.1000-582X.2014.05.011黃中偉, 李根生, 田守嶒, 等. 水力噴射多級壓裂井下工具磨損規律分析. 重慶大學學報, 2014, 37(5):77 doi: 10.11835/j.issn.1000-582X.2014.05.011 -