<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

雄安新區深部碳酸鹽巖熱儲強化增產試驗研究

馬峰 王貴玲 朱喜 張薇 黎楚童 唐顯春 余鳴瀟 趙志宏 楊睿月

馬峰, 王貴玲, 朱喜, 張薇, 黎楚童, 唐顯春, 余鳴瀟, 趙志宏, 楊睿月. 雄安新區深部碳酸鹽巖熱儲強化增產試驗研究[J]. 工程科學學報, 2022, 44(10): 1789-1798. doi: 10.13374/j.issn2095-9389.2022.04.08.008
引用本文: 馬峰, 王貴玲, 朱喜, 張薇, 黎楚童, 唐顯春, 余鳴瀟, 趙志宏, 楊睿月. 雄安新區深部碳酸鹽巖熱儲強化增產試驗研究[J]. 工程科學學報, 2022, 44(10): 1789-1798. doi: 10.13374/j.issn2095-9389.2022.04.08.008
MA Feng, WANG Gui-ling, ZHU Xi, ZHANG Wei, LI Chu-tong, TANG Xian-chun, YU Ming-xiao, ZHAO Zhi-hong, YANG Rui-yue. Experimental study of the enhanced stimulation of a deep carbonate thermal reservoir in the Xiong'an New Area[J]. Chinese Journal of Engineering, 2022, 44(10): 1789-1798. doi: 10.13374/j.issn2095-9389.2022.04.08.008
Citation: MA Feng, WANG Gui-ling, ZHU Xi, ZHANG Wei, LI Chu-tong, TANG Xian-chun, YU Ming-xiao, ZHAO Zhi-hong, YANG Rui-yue. Experimental study of the enhanced stimulation of a deep carbonate thermal reservoir in the Xiong'an New Area[J]. Chinese Journal of Engineering, 2022, 44(10): 1789-1798. doi: 10.13374/j.issn2095-9389.2022.04.08.008

雄安新區深部碳酸鹽巖熱儲強化增產試驗研究

doi: 10.13374/j.issn2095-9389.2022.04.08.008
基金項目: 國家重點研發資助項目(2019YFB1504101);國家自然科學基金資助項目(41602271,41741018,41877197);中國地質調查資助項目(DD20189112);基本科研業務費資助項目(JYYWF20181101)
詳細信息
    通訊作者:

    E-mail: guilingw@163.com

  • 中圖分類號: TG142.71

Experimental study of the enhanced stimulation of a deep carbonate thermal reservoir in the Xiong'an New Area

More Information
  • 摘要: 碳酸鹽巖熱儲是我國水熱型地熱資源開發的主戰場,具有分布廣、厚度大、易回灌等特點。目前的利用僅局限于碳酸鹽巖熱儲頂部約200 m的強巖溶發育帶,由于深部碳酸鹽巖熱儲滲透性低、非均質性強,無法進行規模化開發利用。針對深部巨厚碳酸鹽巖熱儲高效開發技術難題,采用綜合測井與裂隙成像測井技術優選了目標增產層段,創新使用了水力噴射酸化壓裂熱儲改造技術,該技術具有定點起裂、有效封隔、熱儲深穿透、改造體積大等特點。以雄安新區揭露碳酸鹽巖熱儲層厚度最大的地熱井D22為代表開展了現場熱儲改造試驗,結果顯示,目標層段3024~3174 m涌水量由改造前的4.72 m3·h?1增加到改造后的44.10 m3·h?1,提高了8.3倍;單位涌水量由改造前的0.024 m3·(h·m)?1增加到改造后的0.745 m3·(h·m)?1,提高了30倍;儲層滲透系數由4.4×10?3 m·d?1提高到了146.3×10?3 m·d?1;井口水溫由改造前的60.0 ℃增加到66.5 ℃。試驗研究表明,可通過熱儲改造提高深部巨厚碳酸鹽巖熱儲的開發潛能。

     

  • 圖  1  鉆孔柱狀圖

    Figure  1.  Borehole histogram

    圖  2  D22井三開成像測井解釋圖. (a)裂隙密度隨深度分布圖; (b)裂隙走向隨深度分布圖; (c)裂隙傾角及裂隙寬度隨深度分布圖

    Figure  2.  Interpretation map of imaging logging of the third spud in well D22: (a)distribution of fracture density with depth; (b) distribution of fracture strike with depth; (c) distribution of fracture dip and width with depth

    圖  3  水力噴射壓裂原理

    Figure  3.  Principle of hydraulic jet fracturing

    圖  4  雄安新區D22井水力噴射壓裂后噴槍照片

    Figure  4.  Photo of the spray gun after the hydraulic jet fracturing of well D22 in the Xiong’an New Area

    圖  5  D22井壓裂流量壓力隨時間變化曲線

    Figure  5.  Variation curve of fracturing flow and pressure with time in well D22

    圖  6  熱儲改造后產能測試曲線

    Figure  6.  Productivity test after reservoir stimulation

    表  1  典型地熱井的酸化壓裂參數表[16-20]

    Table  1.   Acid fracturing parameters of typical geothermal wells[16-20]

    ReservoirLocationDepth/mBasis
    concentration
    of HCL/%
    Acidification
    amount/m3
    Water
    inflow before
    fracturing/
    (m3·d?1)
    Water
    inflow after
    fracturing/
    (m3·d?1)
    Capacity
    before fracturing/
    m3·(d·m)?1
    Capacity
    after fracturing/
    m3·(d·m)?1
    Maximum
    instantaneous
    pressure/
    MPa
    Water
    temperature
    before
    fracturing/
    °C
    Water
    temperature
    after
    fracturing/
    °C
    Carbonate
    (JXW)
    No. 4, Jingtong, Tongzhou, Beijing1730–280020130951216323.8056.756.543.546
    GraniteSoults
    GPK2, France
    52700.09+0.181080155530.2469.12160164
    Carbonate
    (?)
    Beijing
    YRG ~ 1
    2383
    –3349
    31201980182919.3618.17166568
    Carbonate
    ( JX )
    Fuxingmen, Hexi District, Tianjin WR951776–197620120249229621.515378
    Carbonate
    (?)
    Taiyuan Xiwenzhuang geothermal field X~31500–250016–20700 (400)52831203.4167.8405563
    Carbonate
    (?)
    Southwest of Shandong1310–15002080240864143547
    下載: 導出CSV

    表  2  D22井三開綜合測井解釋結果

    Table  2.   Interpretation results of comprehensive logging of the third spud in well D22

    LayerInitial
    depth/ m
    Terminati-on
    depth/m
    Thick-ness/mRT/(Ω·m)SP/mVGR/APIAC/
    (μs·m?1)
    Shale content/%Porosity/%Permeability /mDReservoir classification
    203000.43003.32.923.024.6329.12277.82927.164004I
    213018.53021.5352.647.1628.3179.628.556.450.2III
    223021.53024.93.422.336.1634.4269.9112.0325.2861.7I
    2330263027.81.868.86.3637.51180.2113.936.970.13III
    243027.83029.71.949.115.3144.01228.9317.8515.1436.62I
    253128.73132.13.411.548.156.47212.528.7910.455II
    263133.63135.21.652.196.4128.34182.569.713.530.1III
    273137.53139.5210.226.0557.38182.628.984.180.07III
    283156.13160.34.215.164.0725.74204.147.3411.56.21II
    293172.33175.83.519.574.5635.73256.9312.6922.69686I
    3031793181.42.475546.847.2175.2205.760.1III
    313250.33252.72.410569.1810.6166.982.115.10.1III
    323315.33317.42.172.64.1911.15169.410.514.250.1III
    333378.73380.41.773.434.2811.73170.421.264.730.1III
    343424.23427.63.4358.15.568.26178.190.126.250.1III
    353437.33440.43.1362.68.910.56195.950.435.260.1III
    363456.53463.46.920.638.2557.69218.9228.3512.67.97II
    373479.43481.42179013.029.59178.330.446.570.18III
    下載: 導出CSV

    表  3  熱儲改造前后產能測試結果對比表

    Table  3.   Comparison of the pumping test before and after reservoir stimulation

    DescentHeat hydraulic head/mDynamic water level/mDepression depth/mWater yield /
    (m3·h?1)
    Specific water yield/(m3·(h·m)?1)Water temperature/℃
    Before
    stimulation
    111.2307.88196.684.720.02460.0
    After stimulationS3101.43160.6659.2344.100.74566.5
    S2136.5435.1133.400.95166.0
    S1114.7713.3418.901.41760.5
    下載: 導出CSV
    久色视频
  • [1] Pang Z H, Pang J M, Kong Y L, et al. Large-scale Karst thermal storage identification method and large-scale sustainable mining technology. Sci Technol Dev, 2020, 16(Suppl 1): 299

    龐忠和, 龐菊梅, 孔彥龍, 等. 大型巖溶熱儲識別方法與規模化可持續開采技術. 科技促進發展, 2020, 16(Suppl 1): 299
    [2] Ma F, Wang G L, Zhang W, et al. Structure of geothermal reservoirs and resource potential in the Rongcheng geothermal field in Xiong’an New area. Acta Geol Sin, 2020, 94(7): 1981 doi: 10.3969/j.issn.0001-5717.2020.07.007

    馬峰, 王貴玲, 張薇, 等. 雄安新區容城地熱田熱儲空間結構及資源潛力. 地質學報, 2020, 94(7):1981 doi: 10.3969/j.issn.0001-5717.2020.07.007
    [3] Wu A M, Ma F, Wang G L, et al. A study of deep-seated Karst geothermal reservoir exploration and huge capacity geothermal well parameters in Xiong’an new area. Acta Geosci Sin, 2018, 39(5): 523 doi: 10.3975/cagsb.2018.071104

    吳愛民, 馬峰, 王貴玲, 等. 雄安新區深部巖溶熱儲探測與高產能地熱井參數研究. 地球學報, 2018, 39(5):523 doi: 10.3975/cagsb.2018.071104
    [4] Wang G L, Gao J, Zhang B J, et al. Study on the thermal storage characteristics of the Wumishan Formation and huge capacity geothermal well parameters in the Gaoyang low uplift area of Xiong’an New Area. Acta Geol Sin, 2020, 94(7): 1970 doi: 10.3969/j.issn.0001-5717.2020.07.006

    王貴玲, 高俊, 張保建, 等. 雄安新區高陽低凸起區霧迷山組熱儲特征與高產能地熱井參數研究. 地質學報, 2020, 94(7):1970 doi: 10.3969/j.issn.0001-5717.2020.07.006
    [5] Ma F, Wang G L, Wei S C, et al. Summary of hot research topics in geothermal exploitation in 2018. Sci Technol Rev, 2019, 37(1): 134

    馬峰, 王貴玲, 魏帥超, 等. 2018年地熱勘探開發熱點回眸. 科技導報, 2019, 37(1):134
    [6] Tang S, Zhu W Y, Zhang J C. Production analysis and fracturing parameter optimization of shale gas from Zhongmou Block in southern North China Basin. Chin J Eng, 2020, 42(12): 1573

    唐帥, 朱維耀, 張金川. 中牟區塊過渡相頁巖氣藏產能分析及壓裂參數優選. 工程科學學報, 2020, 42(12):1573
    [7] Zhu W Y, Zhang Q T, Y M, et al. Effect of uneven distribution of proppant in fracture network on exploitation dynamic characteristics. Chin J Eng, 2020, 42(10): 1318

    朱維耀, 張啟濤, 岳明, 等. 裂縫網絡支撐劑非均勻分布對開采動態規律的影. 工程科學學報, 2020, 42(10):1318
    [8] Portier S, Vuataz F D, Nami P, et al. Chemical stimulation techniques for geothermal wells: Experiments on the three-well EGS system at Soultz-sous-Forêts, France. Geothermics, 2009, 38(4): 349 doi: 10.1016/j.geothermics.2009.07.001
    [9] ásmundsson R, Pezard P, Sanjuan B, et al. High temperature instruments and methods developed for supercritical geothermal reservoir characterisation and exploitation—The HiTI project. Geothermics, 2014, 49: 90 doi: 10.1016/j.geothermics.2013.07.008
    [10] Elders W A, Frieleifsson G ó. The science program of the Iceland deep drilling project (IDDP): A study of supercritical geothermal resources // Proceedings World Geothermal Congress. Bali Indonesia, 2010: 25
    [11] Frank E D, Sullivan J L, Wang M Q. Life cycle analysis of geothermal power generation with supercritical carbon dioxide. Environ Res Lett, 2012, 7(3): 034030 doi: 10.1088/1748-9326/7/3/034030
    [12] Brown D W. A hot dry rock geothermal energy concept utilizing supercritical CO2 instead of water // Twenty-fifth Workshop on Geothermal Reservoir Engineering. Stanford University, 2000: 233
    [13] Cheng W, Jin Y, Chen M, et al. A criterion for identifying hydraulic fractures crossing natural fractures in 3D space. Pet Explor Dev, 2014, 41(3): 336 doi: 10.11698/PED.2014.03.09

    程萬, 金衍, 陳勉, 等. 三維空間中水力裂縫穿透天然裂縫的判別準則. 石油勘探與開發, 2014, 41(3):336 doi: 10.11698/PED.2014.03.09
    [14] Chen M, Zhou J, Jin Y, et al. Experimental study on fracturing features in naturally fractured reservoir. Acta Petrolei Sin, 2008, 29(3): 431 doi: 10.3321/j.issn:0253-2697.2008.03.023

    陳勉, 周健, 金衍, 等. 隨機裂縫性儲層壓裂特征實驗研究. 石油學報, 2008, 29(3):431 doi: 10.3321/j.issn:0253-2697.2008.03.023
    [15] Gu H R, Weng X W, Lund J, et al. Hydraulic fracture crossing natural fracture at nonorthogonal angles, A criterion, its validation. SPE Prod Oper, 2012, 27(1): 139984
    [16] Li W, Kong X J, Yuan L J, et al. Study on geothermal acid fracturing increasing reinjection test in Tongzhou area, Beijing. Urban Geol, 2019, 14(4): 43 doi: 10.3969/j.issn.1007-1903.2019.04.008

    李文, 孔祥軍, 袁利娟, 等. 北京通州地區地熱井酸化壓裂增灌試驗研究. 城市地質, 2019, 14(4):43 doi: 10.3969/j.issn.1007-1903.2019.04.008
    [17] Yang M, Lin T Y, Liu Q, et al. The study on geothermal acid fracturing stimulation technique in a typical area in Beijing. Urban Geol, 2018, 13(4): 14 doi: 10.3969/j.issn.1007-1903.2018.04.003

    楊淼, 林天懿, 劉慶, 等. 北京某典型地區地熱井酸化壓裂增產技術研究. 城市地質, 2018, 13(4):14 doi: 10.3969/j.issn.1007-1903.2018.04.003
    [18] Liu M L, Zhuang Y Q, Zhou C, et al. Application of chemical stimulation technology in enhanced geothermal system: Theory, practice and expectation. J Earth Sci Environ, 2016, 38(2): 267 doi: 10.3969/j.issn.1672-6561.2016.02.014

    劉明亮, 莊亞芹, 周超, 等. 化學刺激技術在增強型地熱系統中的應用: 理論、實踐與展望. 地球科學與環境學報, 2016, 38(2):267 doi: 10.3969/j.issn.1672-6561.2016.02.014
    [19] Ke, B L, Zhao L H, Wen Z T. Application of perforation and acidizing fracturing technology in geothermal well washing. Explor Eng Rock Soil Drill Tunneling, 2007, 34(8): 17

    柯柏林, 趙連海, 溫澤濤. 射孔和酸化壓裂技術在地熱井洗井中的應用. 探礦工程(巖土鉆掘工程), 2007, 34(8):17
    [20] Zhai H Z, Su Z, Wu N Y. Development experiences of the soultz enhanced geothermal systems and inspirations for geothermal development of China. Adv New Renewable Energy, 2014, 2(4): 286 doi: 10.3969/j.issn.2095-560X.2014.04.008

    翟海珍, 蘇正, 吳能友. 蘇爾士增強型地熱系統的開發經驗及對我國地熱開發的啟示. 新能源進展, 2014, 2(4):286 doi: 10.3969/j.issn.2095-560X.2014.04.008
    [21] Xu Y P. Acid Fracturing Technology and Its Application in Geothermal Development of Carbonate Rocks [Dissertation]. Beijing: China University of Geosciences (Beijing), 2014

    徐云鵬. 酸化壓裂工藝在碳酸鹽巖層地熱開發中的應用[學位論文]. 北京: 中國地質大學(北京), 2014
    [22] Xu Y P. Application of acidizing stimulation technology for geothermal development in carbonate rocks. Explor Eng Rock Soil Drill Tunneling, 2015, 42(11): 31

    徐云鵬. 酸化增產工藝在碳酸鹽巖層地熱開發中的應用. 探礦工程(巖土鉆掘工程), 2015, 42(11):31
    [23] Lv D C. Application of acidizing technology in geothermal well stimulation. China Pet Chem Stand Qual, 2013, 33(22): 156 doi: 10.3969/j.issn.1673-4076.2013.22.156

    呂殿臣. 酸化壓裂技術在地熱井增產中的應用. 中國石油和化工標準與質量, 2013, 33(22):156 doi: 10.3969/j.issn.1673-4076.2013.22.156
    [24] Wang L C, Li M L, Cheng W Q, et al. Application of acidifying & fracturing technology to carbonate rock reservoir. Hydrogeol Eng Geol, 2010, 37(5): 128 doi: 10.3969/j.issn.1000-3665.2010.05.024

    王連成, 李明朗, 程萬慶, 等. 酸化壓裂方法在碳酸鹽巖熱儲層中的應用. 水文地質工程地質, 2010, 37(5):128 doi: 10.3969/j.issn.1000-3665.2010.05.024
    [25] Wang P, Zong Z H, Li Z J, et al. Application analysis on acidification and crushing technology for increasing geothermal yield. Explor Eng Rock Soil Drill Tunneling, 2011, 38(10): 30

    王平, 宗振海, 李振杰, 等. 酸化液壓技術在地熱增產中的應用分析. 探礦工程(巖土鉆掘工程), 2011, 38(10):30
    [26] Li Y Z, Tian J Z. Application of acid well Flushing in 2 wells of Niutuo geothermal field in Hebei. Explor Eng Rock Soil Drill Tunneling, 2009, 36(6): 16

    李硯智, 田京振. 酸化洗井在河北牛駝鎮地熱田兩口井中的應用. 探礦工程(巖土鉆掘工程), 2009, 36(6):16
    [27] Lin T Y, Ke B L, Yang M, et al. The acid-fracturing stimulation mechanism and application in hydrothermal-carbonate geothermal reservoir. Urban Geol, 2018, 13(3): 21 doi: 10.3969/j.issn.1007-1903.2018.03.003

    林天懿, 柯柏林, 楊淼, 等. 碳酸鹽巖熱儲酸化壓裂增產機理研究及應用. 城市地質, 2018, 13(3):21 doi: 10.3969/j.issn.1007-1903.2018.03.003
    [28] Ji Y H. Application of acid fracturing technology in geothermal well of carbonate rock in southwest of Shandong Province. Site Invest Sci Technol, 2017(4): 62 doi: 10.3969/j.issn.1001-3946.2017.04.016

    姬永紅. 酸化壓裂技術在魯西南碳酸鹽巖地熱井中的應用. 勘察科學技術, 2017(4):62 doi: 10.3969/j.issn.1001-3946.2017.04.016
    [29] Li G S, Huang Z W, Zhang D B, et al. Block-removing technus using high pressure water jets combined with acidization. Acta Petrolei Sin, 2005, 26(1): 96 doi: 10.3321/j.issn:0253-2697.2005.01.020

    李根生, 黃中偉, 張德斌, 等. 高壓水射流與化學劑復合解堵工藝的機理及應用. 石油學報, 2005, 26(1):96 doi: 10.3321/j.issn:0253-2697.2005.01.020
    [30] Ke B L, Lin T Y, Liu Q. Research and Application of Key Technologies for Carbonated Hydrothermal Geothermal System Acid-fracturing to Increase Production. Beijing: China Land Press, 2019

    柯柏林, 林天懿, 劉慶. 碳酸鹽巖水熱型地熱系統酸化壓裂增產關鍵技術研究與應用. 北京: 中國大地出版社, 2019
    [31] Tian S Z, Li G S, Huang Z W, et al. Research on hydrajet fracturing mechanisms and technologies. Oil Drill Prod Technol, 2008, 30(1): 58 doi: 10.3969/j.issn.1000-7393.2008.01.016

    田守嶒, 李根生, 黃中偉, 等. 水力噴射壓裂機理與技術研究進展. 石油鉆采工藝, 2008, 30(1):58 doi: 10.3969/j.issn.1000-7393.2008.01.016
    [32] Li G S, Huang Z W, Tian S Z, et al. Theory and Application of Hydra-jet Fracturing. Beijing: Science Press, 2011

    李根生, 黃中偉, 田守嶒, 等. 水力噴射壓裂理論與應用. 北京: 科學出版社, 2011
    [33] Huang Z W, Li G S, Wang Y Z, et al. Hydra-jet fracturing applied in a well with three-layer casings. Oil Drill Prod Technol, 2012, 34(5): 122 doi: 10.3969/j.issn.1000-7393.2012.05.032

    黃中偉, 李根生, 汪永章, 等. 水力噴射壓裂技術在3層套管井中的應用. 石油鉆采工藝, 2012, 34(5):122 doi: 10.3969/j.issn.1000-7393.2012.05.032
    [34] Huang Z W, Li G S, Tian S Z, et al. Wear investigation of downhole tools applied to hydra-jet multistage fracturing. J Chongqing Univ, 2014, 37(5): 77 doi: 10.11835/j.issn.1000-582X.2014.05.011

    黃中偉, 李根生, 田守嶒, 等. 水力噴射多級壓裂井下工具磨損規律分析. 重慶大學學報, 2014, 37(5):77 doi: 10.11835/j.issn.1000-582X.2014.05.011
  • 加載中
圖(6) / 表(3)
計量
  • 文章訪問數:  502
  • HTML全文瀏覽量:  185
  • PDF下載量:  58
  • 被引次數: 0
出版歷程
  • 收稿日期:  2022-04-08
  • 網絡出版日期:  2022-07-17
  • 刊出日期:  2022-10-25

目錄

    /

    返回文章
    返回