<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

深地熱開采熱能提取效率研究及對EGS-E的啟示

李迎春 孫文明 亢方超 唐春安

李迎春, 孫文明, 亢方超, 唐春安. 深地熱開采熱能提取效率研究及對EGS-E的啟示[J]. 工程科學學報, 2022, 44(10): 1799-1808. doi: 10.13374/j.issn2095-9389.2022.04.08.003
引用本文: 李迎春, 孫文明, 亢方超, 唐春安. 深地熱開采熱能提取效率研究及對EGS-E的啟示[J]. 工程科學學報, 2022, 44(10): 1799-1808. doi: 10.13374/j.issn2095-9389.2022.04.08.003
LI Ying-chun, SUN Wen-ming, KANG Fang-chao, TANG Chun-an. Heat extraction efficiency in deep geothermal energy mining and implications for EGS-E[J]. Chinese Journal of Engineering, 2022, 44(10): 1799-1808. doi: 10.13374/j.issn2095-9389.2022.04.08.003
Citation: LI Ying-chun, SUN Wen-ming, KANG Fang-chao, TANG Chun-an. Heat extraction efficiency in deep geothermal energy mining and implications for EGS-E[J]. Chinese Journal of Engineering, 2022, 44(10): 1799-1808. doi: 10.13374/j.issn2095-9389.2022.04.08.003

深地熱開采熱能提取效率研究及對EGS-E的啟示

doi: 10.13374/j.issn2095-9389.2022.04.08.003
基金項目: 中國工程院重點咨詢項目(2019-XZ-20)
詳細信息
    通訊作者:

    E-mail: fangchaokang@126.com

  • 中圖分類號: TD803

Heat extraction efficiency in deep geothermal energy mining and implications for EGS-E

More Information
  • 摘要: 深地熱資源因其儲量大、清潔、可持續等優點在近年受到廣泛關注。不同的深地熱開發系統具有不同的熱儲改造方式,而這些熱儲改造方式決定了其與流體工質的換熱效率及采熱量。通過COMSOL Multiphysics多場耦合軟件系統對比了高滲透率、貫穿裂隙(管道)、隨機裂隙和隨機裂隙+貫穿裂隙熱儲模型的熱能提取效率,研究了水力作用、熱力作用和熱儲裂縫間距對裂隙開度的影響。研究結果表明高滲透熱儲的熱能提取效率最高,其次是隨機裂隙熱儲,隨后是隨機裂隙+貫通裂隙熱儲,最小的是貫通裂隙(管道)熱儲。熱儲裂隙開度演化受基巖冷卻收縮和裂隙流體壓力的競爭影響。增加基巖的冷卻收縮和裂隙流體壓力均能提升總裂隙開度;但是當基巖冷卻收縮起主導作用時(熱力作用),系統的注入能力提升;而當裂隙流體壓力起主導作用時(水力作用),系統的注入能力降低。減小裂隙間距可以顯著增加裂隙的熱力作用開度和總開度。當裂隙間距減小到50 m時,熱力作用開度增加為水力作用開度的4.8倍。因此對EGS-E(基于開挖的增強型地熱系統)的主要啟示為:(1)通過優化爆破或水力壓裂等工藝參數,使崩落的干熱巖盡量破碎,形成高滲透率熱儲,可大幅增加熱交換面積,提高熱能提取效率和采熱量;(2)在EGS-E熱儲分層致裂中,應盡量減小層間距,進而增加熱儲的整體裂隙開度,達到提高換熱效率的目的。

     

  • 圖  1  數值模型. (a) 熱能提取效率研究數值模型; (b) 高滲透率模型; (c) 貫通裂隙(或管道)模型; (d) 隨機裂隙模型; (e) 貫通裂隙+隨機裂隙模型

    Figure  1.  Numerical model: (a) numerical model for heat extraction efficiency study; (b) high permeability matrix model; (c) connected fracture (pipes) model; (d) random fracture model; (e) connected fracture and random fracture model

    圖  2  溫度場演化規律. (a)高滲透率熱儲溫度場演化規律; (b) 貫通裂隙(管道)熱儲溫度場演化規律; (c) 隨機裂隙熱儲溫度場演化規律; (d) 貫通裂隙+隨機裂隙熱儲溫度場演化規律

    Figure  2.  Temperature field evolution: (a) high-permeability reservoir model; (b) connected fracture (or pipes) model; (c) random fracture model; (d) connected fracture and random fracture model

    圖  3  不同換熱方式的熱能提取效率. (a) 不同換熱方式年采熱量對比; (b) 不同注水溫度的年采熱量和出水溫度對比 (散點折線圖為采熱量、折線圖為出水溫度、細線為擬合曲線); (c) 不同基質滲透率入水壓力比較

    Figure  3.  Performance of different heat extraction approaches: (a) comparison of annual heat production using different heat exchange models; (b) comparison of annual heat production and water outlet temperature at different water injection temperatures (the scatter-line graph is the amount of heat production; the broken-line graph is the water outlet temperature; and the thin-line is the fitting curve); (c) comparison of water inlet pressure at different matrix permeabilities

    圖  4  取熱示意圖. (a) 分層取熱EGS-E圖; (b) 分層取熱EGS-E數值模型圖

    Figure  4.  Schematic diagram of heat extraction: (a) illustration of EGS-E with multiple slices and (b) numerical model of EGS with multiple slices

    圖  5  熱力作用與水力作用對裂隙開度的影響. (a) 總裂縫開度; (b) 裂縫開度改變量(水力作用); (c) 裂縫開度改變量(熱力作用); (d) 注水量

    Figure  5.  Influence of thermal and hydraulic effects on fracture opening: (a) total fracture opening; (b) change in fracture opening (hydraulic action); (c) change in fracture opening (thermal effect); (d) water injection volume

    圖  6  不同厚度巖體在注入時間為10 a后的溫度分布圖

    Figure  6.  Temperature distributions of rock masses with different thicknesses after 10 years injection

    圖  7  不同裂縫間距下裂縫開度變化趨勢對比圖. (a) 總的裂縫開度; (b) 裂縫開度改變量(水力作用和熱力作用)

    Figure  7.  Comparison of the change trends of fracture opening at different fracture spacings: (a) total fracture opening; (b) change in fracture opening (hydraulic and thermal effect)

    表  1  熱能提取效率研究數值模型中的物理和力學參數

    Table  1.   Physical and mechanical parameters used in the numerical model

    ParameterValueParameterValue
    Thermal conductivity of the bedrock /(W·m?1·K?1)2.75 Dynamic viscosity coefficient of water /(Pa·s)0.001
    Specific heat capacity of the bedrock /
    (J·kg?1·K?1)
    915 Thermal conductivity of water /(W·m?1·K?1)0.58
    Density of the bedrock /(kg·m?3)2600 Specific heat capacity of water /(J·kg?1·K?1)4178
    Elastic modulus of the bedrock /GPa10 Density of water /(kg·m?3)1000
    Poisson's ratio of the bedrock0.3 Injection fluid flow /(kg·s?1)0.01
    Coefficient of thermal expansion of the bedrock/ K?11×10?5 Initial temperature of the injected fluid /°C50
    Initial temperature of the bedrock /℃200 Initial opening of the fracture /m1×10?4
    Permeability of the bedrock /mD1 × 10?3 Fracture stiffness /(GPa·m?1)100
    Pore pressure of the bedrock /MPa5
    下載: 導出CSV

    表  2  隨機裂隙屬性

    Table  2.   Random fracture properties

    Number of
    random fractures
    Average strike
    length /m
    Standard deviation
    of strike length/m
    Average trace
    length/m
    Standard deviation
    of trace length /m
    2001505010050
    下載: 導出CSV

    表  3  不同注水溫度的采熱量曲線擬合

    Table  3.   Curve fitting of heat recovery at different water injection temperatures

    Water injection temperature /
    Fitting formula, $y=a-b\cdot {c}^{t}$
    abcR2
    201559.5967 ± 37.78555?3696.40173 ± 77.569030.86797 ± 0.005860.99073
    401381.06689 ± 37.58555?3256.12666 ± 74.182190.8706 ± 0.006370.98888
    601193.38535 ± 28.63278?2891.47246 ± 56.774530.87029 ± 0.005490.99173
    801030.56764 ± 25.48009?2486.14397 ± 51.630480.86885 ± 0.00580.99086
    100859.89803 ± 21.83143?2074.45482 ± 45.109290.86753 ± 0.006070.99008
    下載: 導出CSV

    表  4  裂隙開度演化數值模型中的物理和力學參數

    Table  4.   Physical and mechanical parameters used in the numerical model

    ParameterValue ParameterValue
    Thermal conductivity of the bedrock /
    (W·m?1·K?1)
    2.75 Dynamic viscosity coefficient of water /(Pa·s)0.001
    Specific heat capacity of the bedrock /
    (J·kg?1·K?1)
    915 Thermal conductivity of water /(W·m?1·K?1)0.58
    Density of the bedrock /(kg·m?3)2600 Specific heat capacity of water /(J·kg?1·K?1)4178
    Elastic modulus of the bedrock /GPa10 Density of water /(kg·m?3)1000
    Poisson's ratio of the bedrock0.3 Injection fluid flow /(kg·s?1)0.01
    Coefficient of thermal expansion of the bedrock /
    K?1
    1×10?5 Initial temperature of the injected fluid /℃50
    Initial temperature of the bedrock /℃200 Initial opening of the fracture/m1×10?4
    Permeability of the bedrock /mD1×10?3 Stiffness of the fracture /(GPa·m?1)100
    下載: 導出CSV
    久色视频
  • [1] Goldemberg J. World energy assessment. Energy and the challenge of sustainability [EB/OL]. ETDEWEB Online (2000-09-01) [2022-04-08].https://www.osti.gov/etdeweb/biblio/20228512
    [2] National Energy Administration, People’s Republic of China. NB/T 10097—2018 Terminology of Geothermal Energy. Beijing: China Petrochemical Press, 2018

    中華人民共和國國家能源局. NB/T 10097—2018地熱能術語. 北京: 中國石化出版社, 2018
    [3] MIT Panel. The Future of Geothermal Energy: Impact of Enhanced Geothermal Systems (EGS) on the United States in the 21st Century. Cambridge: MIT, 2006.
    [4] Kang F C. Damage and Heat Transfer of High-temperature Rock Mass in Enhanced Geothermal Systems Based-Excavation [Dissertation]. Dalian: Dalian University of Technology, 2021

    亢方超. 開挖型增強地熱系統相關的高溫巖體損傷和傳熱研究[學位論文]. 大連: 大連理工大學, 2021
    [5] Kang F C, Tang C A. Overview of enhanced geothermal system (EGS) based on excavation in China. Earth Sci Front, 2020, 27(1): 185

    亢方超, 唐春安. 基于開挖的增強型地熱系統概述. 地學前緣. 2020, 27(1): 185
    [6] Liao Z J, Wan T F, Zhang Z G. The enhanced geothermal system(EGS): Huge capacity and difficult exploitation. Earth Sci Front, 2015, 22(1): 335

    廖志杰, 萬天豐, 張振國. 增強型地熱系統: 潛力大、開發難. 地學前緣, 2015, 22(1):335
    [7] Bertani R. Geothermal power generation in the world 2010—2014 update report. Geothermics, 2016, 60: 31 doi: 10.1016/j.geothermics.2015.11.003
    [8] Breede K, Dzebisashvili K, Liu X, et al. A systematic review of enhanced (or engineered) geothermal systems: Past, present and future. Geotherm Energy, 2013, 1(1): 1 doi: 10.1186/2195-9706-1-1
    [9] Grigoli F, Cesca S, Rinaldi A P, et al. The November 2017 Mw 5.5 Pohang earthquake: A possible case of induced seismicity in South Korea. Science, 2018, 360(6392): 1003
    [10] Whetten J T, Dennis B R, Dreesen D S, et al. The US hot dry rock project. Geothermics, 1987, 16(4): 331 doi: 10.1016/0375-6505(87)90014-9
    [11] Kim K H, Ree J H, Kim Y, et al. Assessing whether the 2017 Mw 5.4 Pohang earthquake in South Korea was an induced event. Science, 2018, 360(6392): 1007
    [12] Kuriyagawa M, Tenma N. Development of hot dry rock technology at the Hijiori test site. Geothermics, 1999, 28(4-5): 627 doi: 10.1016/S0375-6505(99)00033-4
    [13] Pierce K G, Livesay B J. An estimate of the cost of electricity production from hot-dry rock [EB/OL]. OSTI Online (1993-01-01) [2022-04-08].https://www.osti.gov/biblio/6591521
    [14] Tang C A, Zhao J, Wang S J. An EGS-E conceptual model of enhanced geothermal system based on excavation technology. Geoteherm Engrgy, 2019(1): 17

    唐春安, 趙堅, 王思敬. 基于開挖技術的增強型地熱系統EGS-E概念模型. 地熱能, 2019(1):17
    [15] Zhao J, Tang C A, Wang S J. Excavation based enhanced geothermal system (EGS-E): Introduction to a new concept. Geomech Geophys Geo-energ Geo-resour, 2020, 6(1): 6 doi: 10.1007/s40948-019-00127-y
    [16] Cai M F, Dor J, Chen X S, et al. Development strategy for Co-mining of the deep mineral and geothermal resources. Strateg Study CAE, 2021, 23(6): 43

    蔡美峰, 多吉, 陳湘生, 等. 深部礦產和地熱資源共采戰略研究. 中國工程科學, 2021, 23(6):43
    [17] Song J, Tang C A, Kang F C. Synergetic mining mode of deep mineral and geothermal resources. Met Mine, 2020(5): 124

    宋健, 唐春安, 亢方超. 深部礦產與地熱資源協同開采模式. 金屬礦山, 2020(5):124
    [18] Bao Y. Numerical Simulation and Analysis on Heat Transferring Performance of Double T-tube Ground Heat Exchanger [Dissertation]. Wuhan: Hubei University Of Technology, 2018

    鮑宇. 豎直雙U型地埋管換熱器換熱性能的數值模擬分析[學位論文]. 武漢: 湖北工業大學, 2018
    [19] Dai L H. Dynamic Simulation and Experimental Study on Dual Heat Sources Heat Pump System Based on Heat Sources Priority [Dissertation]. Dalian: Dalian University of Technology, 2017

    代蘭花. 基于熱源優先級的雙熱源熱泵系統動態仿真與實驗研究[學位論文]. 大連: 大連理工大學, 2017
    [20] Dai C S, Li J S, Shi Y, et al. An experiment on heat extraction from a deep geothermal well using a downhole coaxial open loop design. Appl Energy, 2019, 252: 113447 doi: 10.1016/j.apenergy.2019.113447
    [21] Dijkshoorn L, Speer S, Pechnig R. Measurements and design calculations for a deep coaxial borehole heat exchanger in Aachen, Germany. Int J Geophys, 2013: 916541
    [22] Kohl T, Brenni R, Eugster W. System performance of a deep borehole heat exchanger. Geothermics, 2002, 31(6): 687 doi: 10.1016/S0375-6505(02)00031-7
    [23] Zhang Y L, Zhao G F. A global review of deep geothermal energy exploration: From a view of rock mechanics and engineering. Geomech Geophys Geo-energ Geo-resour, 2020, 6(1): 4 doi: 10.1007/s40948-019-00126-z
    [24] Li S B, Feng X T, Zhang D X, et al. Coupled thermo-hydro-mechanical analysis of stimulation and production for fractured geothermal reservoirs. Appl Energy, 2019, 247: 40 doi: 10.1016/j.apenergy.2019.04.036
    [25] Sun Z X, Zhang X, Xu Y, et al. Numerical simulation of the heat extraction in EGS with thermal-hydraulic-mechanical coupling method based on discrete fractures model. Energy, 2017, 120: 20 doi: 10.1016/j.energy.2016.10.046
    [26] Yao J, Zhang X, Sun Z X, et al. Numerical simulation of the heat extraction in 3D-EGS with thermal-hydraulic-mechanical coupling method based on discrete fractures model. Geothermics, 2018, 74: 19 doi: 10.1016/j.geothermics.2017.12.005
    [27] Ghassemi A, Suresh Kumar G. Changes in fracture aperture and fluid pressure due to thermal stress and silica dissolution/precipitation induced by heat extraction from subsurface rocks. Geothermics, 2007, 36(2): 115 doi: 10.1016/j.geothermics.2006.10.001
    [28] Kang F C, Li Y C, Tang C A. Numerical study on airflow temperature field in a high-temperature tunnel with insulation layer. Appl Therm Eng, 2020, 179: 115654 doi: 10.1016/j.applthermaleng.2020.115654
    [29] Pruess K, Oldenburg C M, Moridis G J. TOUGH2 user's guide version 2 [EB/OL]. OSTI Online (1999-11-01) [2022-04-08].https://www.osti.gov/biblio/751729
    [30] Wu Y S. Multiphase Fluid Flow in Porous and Fractured Reservoirs. Amsterdam: Gulf Professional Publishing, 2015
    [31] Kang F C, Tang C A, Li Y C, et al. Challenges and opportunities of enhanced geothermal system: A review. Chin J Eng, https://doi.org/10.13374/j.issn2095-9389.2022.04.07.004

    亢方超 唐春安, 李迎春, 李天嬌, 門金龍. 增強地熱系統研究現狀: 挑戰和機遇. 工程科學學報, https://doi.org/10.13374/j.issn2095-9389.2022.04.07.004
  • 加載中
圖(7) / 表(4)
計量
  • 文章訪問數:  453
  • HTML全文瀏覽量:  190
  • PDF下載量:  79
  • 被引次數: 0
出版歷程
  • 收稿日期:  2022-04-08
  • 網絡出版日期:  2022-07-14
  • 刊出日期:  2022-10-25

目錄

    /

    返回文章
    返回