Heat extraction efficiency in deep geothermal energy mining and implications for EGS-E
-
摘要: 深地熱資源因其儲量大、清潔、可持續等優點在近年受到廣泛關注。不同的深地熱開發系統具有不同的熱儲改造方式,而這些熱儲改造方式決定了其與流體工質的換熱效率及采熱量。通過COMSOL Multiphysics多場耦合軟件系統對比了高滲透率、貫穿裂隙(管道)、隨機裂隙和隨機裂隙+貫穿裂隙熱儲模型的熱能提取效率,研究了水力作用、熱力作用和熱儲裂縫間距對裂隙開度的影響。研究結果表明高滲透熱儲的熱能提取效率最高,其次是隨機裂隙熱儲,隨后是隨機裂隙+貫通裂隙熱儲,最小的是貫通裂隙(管道)熱儲。熱儲裂隙開度演化受基巖冷卻收縮和裂隙流體壓力的競爭影響。增加基巖的冷卻收縮和裂隙流體壓力均能提升總裂隙開度;但是當基巖冷卻收縮起主導作用時(熱力作用),系統的注入能力提升;而當裂隙流體壓力起主導作用時(水力作用),系統的注入能力降低。減小裂隙間距可以顯著增加裂隙的熱力作用開度和總開度。當裂隙間距減小到50 m時,熱力作用開度增加為水力作用開度的4.8倍。因此對EGS-E(基于開挖的增強型地熱系統)的主要啟示為:(1)通過優化爆破或水力壓裂等工藝參數,使崩落的干熱巖盡量破碎,形成高滲透率熱儲,可大幅增加熱交換面積,提高熱能提取效率和采熱量;(2)在EGS-E熱儲分層致裂中,應盡量減小層間距,進而增加熱儲的整體裂隙開度,達到提高換熱效率的目的。Abstract: Geothermal energy has recently attracted substantial attention due to its abundant reserve, cleanness, and sustainability. Geothermal reservoirs can be stimulated via different approaches/techniques that lead to different heat extraction efficiencies and production through heat transfer between the working fluid and the reservoir network. Typical reservoir stimulation strategies include hydraulic fracturing, which is employed in conventional geothermal systems based on drilling, namely, EGS-D; indirect heat exchange using U-shaped pipes, namely, EGS-P; and block caving, which is based on the well-developed mining excavation framework, namely, EGS-E. Although the above three reservoir stimulation modes have been made available, their heat extraction performances for a certain reservoir over the operation lifespan have been unexplored. Selecting the appropriate reservoir stimulation approach and assessing the corresponding heat extraction performance are crucial for the design and subsequent operation of geothermal systems. Here, we systematically compared the heat extraction efficiencies of different stimulated reservoir networks under four typical stimulation modes, including a high-permeability reservoir (representing a reservoir stimulated by EGS-E), a connected fracture (representing a reservoir stimulated by EGS-P) reservoir, a reservoir with randomly distributed fractures (representing a reservoir simulated by EGS-D), and a reservoir with randomly distributed fractures and connected fractures (representing a reservoir simulated by the combination of EGS-D and EGS-P). The mechanical, hydraulic, and thermal coupling among the rock matrix, fracture network, and working fluid was realized in COMSOL Multiphysics. We found that the heat extraction efficiency of the high-permeability reservoir was the highest and that of the reservoir with randomly distributed fractures and connected fractures was the lowest. Crack aperture evolution was modulated by the competition between matrix contraction and hydraulic enhancement. The total crack aperture can be increased by increasing the matrix contraction and the hydraulic pressure of the working flow. Injection capability improved when the matrix contraction (thermal effect) prevailed but decreased when the working flow pressure (hydraulic effect) dominated. We also found that the smaller the matrix spacing, the larger the thermal effect-induced crack aperture and thus the total aperture. When the matrix spacing was reduced to 50 m, the thermal effect-induced crack aperture was nearly five times the hydraulic effect-induced crack aperture. The above findings have the following implications for EGS-E: first, the reservoir should be caved into fractured blocks that are as small as possible to increase permeability. Heat extraction efficiency and heat production can thus be highly promoted. Second, for the EGS-E with multiple reservoir slices, the slice spacing should be appropriately optimized to ensure high crack apertures and thus commensurate heat extraction efficiency.
-
圖 1 數值模型. (a) 熱能提取效率研究數值模型; (b) 高滲透率模型; (c) 貫通裂隙(或管道)模型; (d) 隨機裂隙模型; (e) 貫通裂隙+隨機裂隙模型
Figure 1. Numerical model: (a) numerical model for heat extraction efficiency study; (b) high permeability matrix model; (c) connected fracture (pipes) model; (d) random fracture model; (e) connected fracture and random fracture model
圖 3 不同換熱方式的熱能提取效率. (a) 不同換熱方式年采熱量對比; (b) 不同注水溫度的年采熱量和出水溫度對比 (散點折線圖為采熱量、折線圖為出水溫度、細線為擬合曲線); (c) 不同基質滲透率入水壓力比較
Figure 3. Performance of different heat extraction approaches: (a) comparison of annual heat production using different heat exchange models; (b) comparison of annual heat production and water outlet temperature at different water injection temperatures (the scatter-line graph is the amount of heat production; the broken-line graph is the water outlet temperature; and the thin-line is the fitting curve); (c) comparison of water inlet pressure at different matrix permeabilities
圖 5 熱力作用與水力作用對裂隙開度的影響. (a) 總裂縫開度; (b) 裂縫開度改變量(水力作用); (c) 裂縫開度改變量(熱力作用); (d) 注水量
Figure 5. Influence of thermal and hydraulic effects on fracture opening: (a) total fracture opening; (b) change in fracture opening (hydraulic action); (c) change in fracture opening (thermal effect); (d) water injection volume
表 1 熱能提取效率研究數值模型中的物理和力學參數
Table 1. Physical and mechanical parameters used in the numerical model
Parameter Value Parameter Value Thermal conductivity of the bedrock /(W·m?1·K?1) 2.75 Dynamic viscosity coefficient of water /(Pa·s) 0.001 Specific heat capacity of the bedrock /
(J·kg?1·K?1)915 Thermal conductivity of water /(W·m?1·K?1) 0.58 Density of the bedrock /(kg·m?3) 2600 Specific heat capacity of water /(J·kg?1·K?1) 4178 Elastic modulus of the bedrock /GPa 10 Density of water /(kg·m?3) 1000 Poisson's ratio of the bedrock 0.3 Injection fluid flow /(kg·s?1) 0.01 Coefficient of thermal expansion of the bedrock/ K?1 1×10?5 Initial temperature of the injected fluid /°C 50 Initial temperature of the bedrock /℃ 200 Initial opening of the fracture /m 1×10?4 Permeability of the bedrock /mD 1 × 10?3 Fracture stiffness /(GPa·m?1) 100 Pore pressure of the bedrock /MPa 5 表 2 隨機裂隙屬性
Table 2. Random fracture properties
Number of
random fracturesAverage strike
length /mStandard deviation
of strike length/mAverage trace
length/mStandard deviation
of trace length /m200 150 50 100 50 表 3 不同注水溫度的采熱量曲線擬合
Table 3. Curve fitting of heat recovery at different water injection temperatures
Water injection temperature /
℃Fitting formula, $y=a-b\cdot {c}^{t}$ a b c R2 20 1559.5967 ± 37.78555 ?3696.40173 ± 77.56903 0.86797 ± 0.00586 0.99073 40 1381.06689 ± 37.58555 ?3256.12666 ± 74.18219 0.8706 ± 0.00637 0.98888 60 1193.38535 ± 28.63278 ?2891.47246 ± 56.77453 0.87029 ± 0.00549 0.99173 80 1030.56764 ± 25.48009 ?2486.14397 ± 51.63048 0.86885 ± 0.0058 0.99086 100 859.89803 ± 21.83143 ?2074.45482 ± 45.10929 0.86753 ± 0.00607 0.99008 表 4 裂隙開度演化數值模型中的物理和力學參數
Table 4. Physical and mechanical parameters used in the numerical model
Parameter Value Parameter Value Thermal conductivity of the bedrock /
(W·m?1·K?1)2.75 Dynamic viscosity coefficient of water /(Pa·s) 0.001 Specific heat capacity of the bedrock /
(J·kg?1·K?1)915 Thermal conductivity of water /(W·m?1·K?1) 0.58 Density of the bedrock /(kg·m?3) 2600 Specific heat capacity of water /(J·kg?1·K?1) 4178 Elastic modulus of the bedrock /GPa 10 Density of water /(kg·m?3) 1000 Poisson's ratio of the bedrock 0.3 Injection fluid flow /(kg·s?1) 0.01 Coefficient of thermal expansion of the bedrock /
K?11×10?5 Initial temperature of the injected fluid /℃ 50 Initial temperature of the bedrock /℃ 200 Initial opening of the fracture/m 1×10?4 Permeability of the bedrock /mD 1×10?3 Stiffness of the fracture /(GPa·m?1) 100 -
參考文獻
[1] Goldemberg J. World energy assessment. Energy and the challenge of sustainability [EB/OL]. ETDEWEB Online (2000-09-01) [2022-04-08].https://www.osti.gov/etdeweb/biblio/20228512 [2] National Energy Administration, People’s Republic of China. NB/T 10097—2018 Terminology of Geothermal Energy. Beijing: China Petrochemical Press, 2018中華人民共和國國家能源局. NB/T 10097—2018地熱能術語. 北京: 中國石化出版社, 2018 [3] MIT Panel. The Future of Geothermal Energy: Impact of Enhanced Geothermal Systems (EGS) on the United States in the 21st Century. Cambridge: MIT, 2006. [4] Kang F C. Damage and Heat Transfer of High-temperature Rock Mass in Enhanced Geothermal Systems Based-Excavation [Dissertation]. Dalian: Dalian University of Technology, 2021亢方超. 開挖型增強地熱系統相關的高溫巖體損傷和傳熱研究[學位論文]. 大連: 大連理工大學, 2021 [5] Kang F C, Tang C A. Overview of enhanced geothermal system (EGS) based on excavation in China. Earth Sci Front, 2020, 27(1): 185亢方超, 唐春安. 基于開挖的增強型地熱系統概述. 地學前緣. 2020, 27(1): 185 [6] Liao Z J, Wan T F, Zhang Z G. The enhanced geothermal system(EGS): Huge capacity and difficult exploitation. Earth Sci Front, 2015, 22(1): 335廖志杰, 萬天豐, 張振國. 增強型地熱系統: 潛力大、開發難. 地學前緣, 2015, 22(1):335 [7] Bertani R. Geothermal power generation in the world 2010—2014 update report. Geothermics, 2016, 60: 31 doi: 10.1016/j.geothermics.2015.11.003 [8] Breede K, Dzebisashvili K, Liu X, et al. A systematic review of enhanced (or engineered) geothermal systems: Past, present and future. Geotherm Energy, 2013, 1(1): 1 doi: 10.1186/2195-9706-1-1 [9] Grigoli F, Cesca S, Rinaldi A P, et al. The November 2017 Mw 5.5 Pohang earthquake: A possible case of induced seismicity in South Korea. Science, 2018, 360(6392): 1003 [10] Whetten J T, Dennis B R, Dreesen D S, et al. The US hot dry rock project. Geothermics, 1987, 16(4): 331 doi: 10.1016/0375-6505(87)90014-9 [11] Kim K H, Ree J H, Kim Y, et al. Assessing whether the 2017 Mw 5.4 Pohang earthquake in South Korea was an induced event. Science, 2018, 360(6392): 1007 [12] Kuriyagawa M, Tenma N. Development of hot dry rock technology at the Hijiori test site. Geothermics, 1999, 28(4-5): 627 doi: 10.1016/S0375-6505(99)00033-4 [13] Pierce K G, Livesay B J. An estimate of the cost of electricity production from hot-dry rock [EB/OL]. OSTI Online (1993-01-01) [2022-04-08].https://www.osti.gov/biblio/6591521 [14] Tang C A, Zhao J, Wang S J. An EGS-E conceptual model of enhanced geothermal system based on excavation technology. Geoteherm Engrgy, 2019(1): 17唐春安, 趙堅, 王思敬. 基于開挖技術的增強型地熱系統EGS-E概念模型. 地熱能, 2019(1):17 [15] Zhao J, Tang C A, Wang S J. Excavation based enhanced geothermal system (EGS-E): Introduction to a new concept. Geomech Geophys Geo-energ Geo-resour, 2020, 6(1): 6 doi: 10.1007/s40948-019-00127-y [16] Cai M F, Dor J, Chen X S, et al. Development strategy for Co-mining of the deep mineral and geothermal resources. Strateg Study CAE, 2021, 23(6): 43蔡美峰, 多吉, 陳湘生, 等. 深部礦產和地熱資源共采戰略研究. 中國工程科學, 2021, 23(6):43 [17] Song J, Tang C A, Kang F C. Synergetic mining mode of deep mineral and geothermal resources. Met Mine, 2020(5): 124宋健, 唐春安, 亢方超. 深部礦產與地熱資源協同開采模式. 金屬礦山, 2020(5):124 [18] Bao Y. Numerical Simulation and Analysis on Heat Transferring Performance of Double T-tube Ground Heat Exchanger [Dissertation]. Wuhan: Hubei University Of Technology, 2018鮑宇. 豎直雙U型地埋管換熱器換熱性能的數值模擬分析[學位論文]. 武漢: 湖北工業大學, 2018 [19] Dai L H. Dynamic Simulation and Experimental Study on Dual Heat Sources Heat Pump System Based on Heat Sources Priority [Dissertation]. Dalian: Dalian University of Technology, 2017代蘭花. 基于熱源優先級的雙熱源熱泵系統動態仿真與實驗研究[學位論文]. 大連: 大連理工大學, 2017 [20] Dai C S, Li J S, Shi Y, et al. An experiment on heat extraction from a deep geothermal well using a downhole coaxial open loop design. Appl Energy, 2019, 252: 113447 doi: 10.1016/j.apenergy.2019.113447 [21] Dijkshoorn L, Speer S, Pechnig R. Measurements and design calculations for a deep coaxial borehole heat exchanger in Aachen, Germany. Int J Geophys, 2013: 916541 [22] Kohl T, Brenni R, Eugster W. System performance of a deep borehole heat exchanger. Geothermics, 2002, 31(6): 687 doi: 10.1016/S0375-6505(02)00031-7 [23] Zhang Y L, Zhao G F. A global review of deep geothermal energy exploration: From a view of rock mechanics and engineering. Geomech Geophys Geo-energ Geo-resour, 2020, 6(1): 4 doi: 10.1007/s40948-019-00126-z [24] Li S B, Feng X T, Zhang D X, et al. Coupled thermo-hydro-mechanical analysis of stimulation and production for fractured geothermal reservoirs. Appl Energy, 2019, 247: 40 doi: 10.1016/j.apenergy.2019.04.036 [25] Sun Z X, Zhang X, Xu Y, et al. Numerical simulation of the heat extraction in EGS with thermal-hydraulic-mechanical coupling method based on discrete fractures model. Energy, 2017, 120: 20 doi: 10.1016/j.energy.2016.10.046 [26] Yao J, Zhang X, Sun Z X, et al. Numerical simulation of the heat extraction in 3D-EGS with thermal-hydraulic-mechanical coupling method based on discrete fractures model. Geothermics, 2018, 74: 19 doi: 10.1016/j.geothermics.2017.12.005 [27] Ghassemi A, Suresh Kumar G. Changes in fracture aperture and fluid pressure due to thermal stress and silica dissolution/precipitation induced by heat extraction from subsurface rocks. Geothermics, 2007, 36(2): 115 doi: 10.1016/j.geothermics.2006.10.001 [28] Kang F C, Li Y C, Tang C A. Numerical study on airflow temperature field in a high-temperature tunnel with insulation layer. Appl Therm Eng, 2020, 179: 115654 doi: 10.1016/j.applthermaleng.2020.115654 [29] Pruess K, Oldenburg C M, Moridis G J. TOUGH2 user's guide version 2 [EB/OL]. OSTI Online (1999-11-01) [2022-04-08].https://www.osti.gov/biblio/751729 [30] Wu Y S. Multiphase Fluid Flow in Porous and Fractured Reservoirs. Amsterdam: Gulf Professional Publishing, 2015 [31] Kang F C, Tang C A, Li Y C, et al. Challenges and opportunities of enhanced geothermal system: A review. Chin J Eng, https://doi.org/10.13374/j.issn2095-9389.2022.04.07.004亢方超 唐春安, 李迎春, 李天嬌, 門金龍. 增強地熱系統研究現狀: 挑戰和機遇. 工程科學學報, https://doi.org/10.13374/j.issn2095-9389.2022.04.07.004 -