<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

增強地熱系統研究現狀:挑戰與機遇

亢方超 唐春安 李迎春 李天嬌 門金龍

亢方超, 唐春安, 李迎春, 李天嬌, 門金龍. 增強地熱系統研究現狀:挑戰與機遇[J]. 工程科學學報, 2022, 44(10): 1767-1777. doi: 10.13374/j.issn2095-9389.2022.04.07.004
引用本文: 亢方超, 唐春安, 李迎春, 李天嬌, 門金龍. 增強地熱系統研究現狀:挑戰與機遇[J]. 工程科學學報, 2022, 44(10): 1767-1777. doi: 10.13374/j.issn2095-9389.2022.04.07.004
KANG Fang-chao, TANG Chun-an, LI Ying-chun, LI Tian-jiao, MEN Jin-long. Challenges and opportunities of enhanced geothermal systems: A review[J]. Chinese Journal of Engineering, 2022, 44(10): 1767-1777. doi: 10.13374/j.issn2095-9389.2022.04.07.004
Citation: KANG Fang-chao, TANG Chun-an, LI Ying-chun, LI Tian-jiao, MEN Jin-long. Challenges and opportunities of enhanced geothermal systems: A review[J]. Chinese Journal of Engineering, 2022, 44(10): 1767-1777. doi: 10.13374/j.issn2095-9389.2022.04.07.004

增強地熱系統研究現狀:挑戰與機遇

doi: 10.13374/j.issn2095-9389.2022.04.07.004
基金項目: 中國工程院重點咨詢項目(2019-XZ-16);廣東石油化工學院人才引進項目(XJ2022000801)
詳細信息
    通訊作者:

    E-mail: yingchun_li@dlut.edu.cn

  • 中圖分類號: TD803

Challenges and opportunities of enhanced geothermal systems: A review

More Information
  • 摘要: 開發地熱資源,尤其是深部干熱巖地熱資源,是加快能源結構轉型,順利實現“雙碳”目標的重要途徑。增強地熱系統經歷了50余年的發展,在深部地熱資源開采方面取得了豐富的研究成果和施工經驗。回顧增強地熱系統的發展歷程,總結熱儲特征、儲層改造以及示范項目的終止原因,分析商業化面臨的挑戰,探討未來的探索方向和發展機遇,能夠有效服務我國深部地熱資源開發和示范項目的建設。在經歷研究和開發階段后,增強地熱系統進入示范和商業化的飛速發展階段,截至2021年末,世界累計的增強地熱系統數量已達41個,累計發電裝機量為37.41 MW;儲層地質條件的復雜性和差異性以及現有改造技術對儲層原位地質環境的依賴性,難以形成“可復制”的熱儲改造模式,由此導致的熱儲質量差等問題是制約增強地熱系統發展的主要原因;建立典型的干熱巖增強地熱系統示范項目或探索基于采礦技術的增強地熱系統,突破熱儲改造對原位地質條件的依賴性,形成“可復制”的深部地熱資源開采體系,是增強地熱系統未來的發展方向,也是實現深部地熱資源大規模商業化的關鍵出路。

     

  • 圖  1  增強地熱系統項目發展趨勢

    Figure  1.  Development of the time and area distribution of EGS projects in the world

    圖  2  增強地熱系統鉆井深度與儲層溫度分布. (a)項目分布明細;(b)隨項目時間的發展趨勢

    Figure  2.  Depth and reservoir temperature variations of EGS projects: (a) single EGS; (b) variating with the operation time

    圖  3  增強地熱系統鉆井深度與儲層溫度分布

    Figure  3.  Depth and reservoir temperature distribution of EGS projects around the world

    圖  4  增強地熱系統熱儲巖性與熱儲改造方式分布情況

    Figure  4.  Reservoir lithology and stimulation of EGS projects around the world

    Note:H, T, and C denotes the hydraulic, thermal, and chemical stimulations, respectively

    圖  5  熱儲巖性與熱儲改造方式發展趨勢

    Figure  5.  Variations of reservoir lithology and stimulation of EGS projects

    表  1  商業化EGS熱儲參數取值區間[3]

    Table  1.   Critical value of thermal reservoir parameters in a commercial EGS[3]

    ParametersCritical valueParametersCritical value
    Flow rate/( L?s?1)50?100Thermal reservoir volume/m3>2×108
    Outlet temperature/℃150?200Fluid resistance/(MPa?kg?1?s?1)<0.1
    Effective heat exchange area/m2>2×106Water loss/%< 10
    下載: 導出CSV

    表  2  EGS項目發電裝機容量一覽表

    Table  2.   Total installed power generation capacity of EGS projects

    CountriesProjectsInstalled capacity
    of power /MW
    CountriesProjectsInstalled capacity
    of power /MW
    USAFenton Hill0.06 GermanyNeustadt-Glewe0.21
    FranceSoultz1.5GermanyLandau3.6
    JapanHijiori0.13 GermanyInsheim4.8*
    AustraliaAltheim1.0 GermanyBruchsal0.55
    USADesert Peak1.7 GermanyGro? Sch?nebeck1.0
    AustraliaHabanero1.0 GermanyUnterhaching3.36*
    El SalvadorBerlin6.0 USARaft River5.0*
    USANW Geysers3.5* UKEden4.0*
    Note:* denotes planned installed capacity, MW.
    下載: 導出CSV

    表  3  已終止的EGS項目概況一覽表

    Table  3.   Overview of the closed EGS projects

    CountriesProjectsLifespanReasons for suspension or closure
    USAFenton Hill1972—1993Insufficient heat reservoir scale; Severe fluid loss
    UKRosemanowes1976—1992Severe fluid loss (above 70%); Earthquake (Mw 3.1)
    GermanyFalkenberg1977—1986Low fluid temperature
    FranceLe Mayet1978—1986Low fluid temperature
    JapanOgachi1982—2002Severe fluid loss (75%?90%)
    SwedenFj?llbacka1984—1995Severe fluid loss (50%)
    JapanHijiori1981—1986Severe fluid loss (70%); Sudden drop in fluid temperature
    AustraliaHunter Valley1999—2015Lack of funds and policy support
    SwitzerlandBasel1996—2006Earthquake (Mw 3.4)
    USADesert Peak2008—2013End of test
    USACoso2002—2012Drilling fracturing accident
    GermanyBad Urach2006—2008Drilling fracturing accident
    AustraliaHabanero2002—2013Lack of funds and policy support
    GermanyHorstberg2003—2017End of test
    AustraliaParalana2004—2014Lack of funds and policy support
    GermanyLandau2007—2014Earthquake
    USABrady2008—2015End of test
    USASoutheast Geysers2008—2009Borehole collapse
    SwitzerlandSt Gallen2009—2014Earthquake (Mw 3.4); Insufficient flow rate
    KoreaPohang2015—2017Earthquake (Mw 5.4)
    Note:Mw denotes the earthquake magnitude.
    下載: 導出CSV

    表  4  EGS項目微震或地震活動明細表

    Table  4.   Details of microseismic or earthquake activity in EGS projects`

    CountryProjectMagnitudeLithologyCountryProjectMagnitudeLithology
    UKRosemanowes3.1Granite USANW Geysers2.8Sandstone
    FranceSoultz2.9Granite GermanyInsheim2.4Granite
    SwitzerlandBasel3.4Granite GermanyGro? Sch?nebeck1.8Sandstone
    USADesert Peak1.7Granite SwitzerlandSt Gallen3.5Carbonate
    USACoso2.8Granite GermanyHannover1.8Sandstone
    AustraliaHabanero3.7Granite KoreaPohang5.4Granite
    El SalvadorBerlin4.4Volcanic FinlandOtaniemi1.8Granite
    AustraliaParalana2.6Granite USAMilford2.0Granite
    GermanyLandau2.7Granite
    下載: 導出CSV
    久色视频
  • [1] Li D W, Wang Y X. Major issues of research and development of hot dry rock geothermal energy. Earth Sci, 2015, 40(11): 1858

    李德威, 王焰新. 干熱巖地熱能研究與開發的若干重大問題. 地球科學, 2015, 40(11):1858
    [2] Zhu J L, Hu K Y, Lu X L, et al. A review of geothermal energy resources, development, and applications in China: Current status and prospects. Energy, 2015, 93: 466 doi: 10.1016/j.energy.2015.08.098
    [3] Rybach L. Geothermal energy: Sustainability and the environment. Geothermics, 2003, 32(4-6): 463 doi: 10.1016/S0375-6505(03)00057-9
    [4] Hu J, Su Z, Wu N Y, et al. Analysis on temperature fields of thermal-hydraulic coupled fluid and rock in Enhanced Geothermal System. Prog Geophys, 2014, 29(3): 1391 doi: 10.6038/pg20140354

    胡劍, 蘇正, 吳能友, 等. 增強型地熱系統熱流耦合水巖溫度場分析. 地球物理學進展, 2014, 29(3):1391 doi: 10.6038/pg20140354
    [5] Liao Z J, Wan T F, Zhang Z G. The enhanced geothermal system (EGS): Huge capacity and difficult exploitation. Earth Sci Front, 2015, 22(1): 335

    廖志杰, 萬天豐, 張振國. 增強型地熱系統: 潛力大、開發難. 地學前緣, 2015, 22(1):335
    [6] Xu T F, Hu Z X, Li S T, et al. Enhanced geothermal system: International progresses and research status of China. Acta Geol Sin, 2018, 92(9): 1936 doi: 10.3969/j.issn.0001-5717.2018.09.012

    許天福, 胡子旭, 李勝濤, 等. 增強型地熱系統: 國際研究進展與我國研究現狀. 地質學報, 2018, 92(9):1936 doi: 10.3969/j.issn.0001-5717.2018.09.012
    [7] Lund J W, Boyd T L. Direct utilization of geothermal energy 2015 worldwide review. Geothermics, 2016, 60: 66 doi: 10.1016/j.geothermics.2015.11.004
    [8] Lund J W, Freeston D H, Boyd T L. Direct utilization of geothermal energy 2010 worldwide review. Geothermics, 2011, 40(3): 159 doi: 10.1016/j.geothermics.2011.07.004
    [9] Lund J W, Toth A N. Direct utilization of geothermal energy 2020 worldwide review. Geothermics, 2021, 90: 101915 doi: 10.1016/j.geothermics.2020.101915
    [10] Wang G L, Liu Y G, Zhu X, et al. The status and development trend of geothermal resources in China. Earth Sci Front, 2020, 27(1): 1 doi: 10.13745/j.esf.2020.1.1

    王貴玲, 劉彥廣, 朱喜, 等. 中國地熱資源現狀及發展趨勢. 地學前緣, 2020, 27(1):1 doi: 10.13745/j.esf.2020.1.1
    [11] Wang G L, Zhang W, Liang J Y, et al. Evaluation of geothermal resources potential in China. Acta Geosci Sin, 2017, 38(4): 449 doi: 10.3975/cagsb.2017.04.02

    王貴玲, 張薇, 梁繼運, 等. 中國地熱資源潛力評價. 地球學報, 2017, 38(4):449 doi: 10.3975/cagsb.2017.04.02
    [12] Wang J Y, Hu S B, Pang Z H, et al. Estimate of geothermal resources potential for hot dry rock in the continental area of China. Sci Technol Rev, 2012, 30(32): 25 doi: 10.3981/j.issn.1000-7857.2012.32.002

    汪集旸, 胡圣標, 龐忠和, 等. 中國大陸干熱巖地熱資源潛力評估. 科技導報, 2012, 30(32):25 doi: 10.3981/j.issn.1000-7857.2012.32.002
    [13] Kruger P, Otte C. Geothermal Energy: Resources, Production, Stimulation. Stanford: Stanford University Press, 1973
    [14] Bertani R. Geothermal power generation in the world 2010—2014 update report. Geothermics, 2016, 60: 31 doi: 10.1016/j.geothermics.2015.11.003
    [15] Whetten J T, Dennis B R, Dreesen D S, et al. The US hot dry rock project. Geothermics, 1987, 16(4): 331 doi: 10.1016/0375-6505(87)90014-9
    [16] Breede K, Dzebisashvili K, Liu X L, et al. A systematic review of enhanced (or engineered) geothermal systems: Past, present and future. Geotherm Energy, 2013, 1(1): 1 doi: 10.1186/2195-9706-1-1
    [17] McClure M W, Horne R N. An investigation of stimulation mechanisms in Enhanced Geothermal Systems. Int J Rock Mech Min Sci, 2014, 72: 242 doi: 10.1016/j.ijrmms.2014.07.011
    [18] Olasolo P, Juárez M C, Morales M P, et al. Enhanced geothermal systems (EGS): A review. Renew Sustain Energy Rev, 2016, 56: 133 doi: 10.1016/j.rser.2015.11.031
    [19] Brown D W, Duchane D V, Heiken G, et al. Mining the Earth's Heat: Hot Dry Rock Geothermal Energy. Berlin: Springer Science & Business Media, 2012
    [20] Zhang C, Jiang G Z, Jia X F, et al. Parametric study of the production performance of an enhanced geothermal system: A case study at the Qiabuqia geothermal area, northeast Tibetan plateau. Renew Energy, 2019, 132: 959 doi: 10.1016/j.renene.2018.08.061
    [21] Kim K I, Min K B, Kim K Y, et al. Protocol for induced microseismicity in the first enhanced geothermal systems project in Pohang, Korea. Renew Sustain Energy Rev, 2018, 91: 1182 doi: 10.1016/j.rser.2018.04.062
    [22] Kappelmeyer O, Jung R. HDR experiments at falkenberg/Bavaria. Geothermics, 1987, 16(4): 375 doi: 10.1016/0375-6505(87)90017-4
    [23] Nemat-Nasser S, Abé H, Hirakawa S. Hydraulic Fracturing and Geothermal Energy. Dordrecht: Springer Netherlands, 1983
    [24] Ito H. Inferred role of natural fractures, veins, and breccias in development of the artificial geothermal reservoir at the Ogachi Hot Dry Rock site, Japan. J Geophys Res, 2003, 108(B9): 2426
    [25] Avouac J P, Vrain M, Kim T, et al. A convolution model for earthquake forecasting derived from seismicity recorded during the ST1 geothermal project on otaniemi campus, Finland // Proceedings World Geothermal Congress. Reykjavik, 2020: 1
    [26] Frieleifsson G ó, Elders W A, Bignall G. A plan for a 5 km-deep borehole at Reykjanes, Iceland, into the root zone of a black smoker on land. Sci Dril, 2013, 16: 73 doi: 10.5194/sd-16-73-2013
    [27] Sigurjónsson H ?, Cook D, Davíesdóttir B, et al. A life-cycle analysis of deep enhanced geothermal systems: The case studies of Reykjanes, Iceland and Vendenheim, France. Renew Energy, 2021, 177: 1076 doi: 10.1016/j.renene.2021.06.013
    [28] Richards H G, Parker R H, Green A S P, et al. The performance and characteristics of the experimental hot dry rock geothermal reservoir at Rosemanowes, Cornwall (1985—1988). Geothermics, 1994, 23(2): 73 doi: 10.1016/0375-6505(94)90032-9
    [29] Seibt P, Hoth P. The neustadt-glewe geothermal station: Form surveys to active operation. Therm Eng, 2004, 51(6): 494
    [30] Bargar K E, Keith T E C. Hydrothermal Mineralogy of Core from Geothermal Drill Holes at Newberry Volcano, Oregon. Washington, US Government Printing Office, 1999.
    [31] Mraz E, Moeck I, Bissmann S, et al. Multiphase fossil normal faults as geothermal exploration targets in the Western Bavarian Molasse Basin: Case study Mauerstetten. Z Dt Ges Geowiss, 2018, 169(3): 389
    [32] Pang Z H, Luo J, Cheng Y Z, et al. Evaluation of geological conditions for the development of deep geothermal energy in China. Earth Sci Front, 2020, 27(1): 134 doi: 10.13745/j.esf.2020.1.15

    龐忠和, 羅霽, 程遠志, 等. 中國深層地熱能開采的地質條件評價. 地學前緣, 2020, 27(1):134 doi: 10.13745/j.esf.2020.1.15
    [33] Zhang S Q, Wen D G, Xu T F, et al. The US Frontier Observatory For Research in Geothermal Energy project and comparison of typical EGS site exploration status in China and US. Earth Sci Front, 2019, 26(2): 321

    張森琦, 文冬光, 許天福, 等. 美國干熱巖“地熱能前沿瞭望臺研究計劃”與中美典型EGS場地勘查現狀對比. 地學前緣, 2019, 26(2):321
    [34] Shao S S, Ranjith P G, Wasantha P L P, et al. Experimental and numerical studies on the mechanical behaviour of Australian Strathbogie granite at high temperatures: An application to geothermal energy. Geothermics, 2015, 54: 96 doi: 10.1016/j.geothermics.2014.11.005
    [35] Kang F C, Li Y C, Tang C A. Grain size heterogeneity controls strengthening to weakening of granite over high-temperature treatment. Int J Rock Mech Min Sci, 2021, 145: 104848 doi: 10.1016/j.ijrmms.2021.104848
    [36] Zhang W, Guo T K, Qu Z Q, et al. Research of fracture initiation and propagation in HDR fracturing under thermal stress from meso-damage perspective. Energy, 2019, 178: 508 doi: 10.1016/j.energy.2019.04.131
    [37] Tomac I, Sauter M. A review on challenges in the assessment of geomechanical rock performance for deep geothermal reservoir development. Renew Sustain Energy Rev, 2018, 82: 3972 doi: 10.1016/j.rser.2017.10.076
    [38] Sanyal S K, Morrow J W, Butler S J, et al. Is EGS commercially feasible? Trans Geotherm Resour Counc, 2007, 31: 313
    [39] Schill E, Genter A, Cuenot N, et al. Hydraulic performance history at the Soultz EGS reservoirs from stimulation and long-term circulation tests. Geothermics, 2017, 70: 110 doi: 10.1016/j.geothermics.2017.06.003
    [40] Kang F C, Tang C A. Overview of enhanced geothermal system (EGS) based on excavation in China. Earth Sci Front, 2020, 27(1): 185 doi: 10.13745/j.esf.2020.1.20

    亢方超, 唐春安. 基于開挖的增強型地熱系統概述. 地學前緣, 2020, 27(1):185 doi: 10.13745/j.esf.2020.1.20
    [41] Sasaki S. Characteristics of microseismic events induced during hydraulic fracturing experiments at the Hijiori hot dry rock geothermal energy site, Yamagata, Japan. Tectonophysics, 1998, 289(1-3): 171 doi: 10.1016/S0040-1951(97)00314-4
    [42] Dyer B C, Schanz U, Ladner F, et al. Microseismic imaging of a geothermal reservoir stimulation. Lead Edge, 2008, 27(7): 856 doi: 10.1190/1.2954024
    [43] Kim K H, Ree J H, Kim Y, et al. Assessing whether the 2017 Mw 5. 4 Pohang earthquake in South Korea was an induced event. Science, 2018, 360(6392): 1007
    [44] Grigoli F, Cesca S, Rinaldi A P, et al. The November 2017 Mw 5. 5 Pohang earthquake:A possible case of induced seismicity in South Korea. Science, 2018, 360(6392): 1003
    [45] Mao X, Guo D B, Luo L, et al. The global development process of hot dry rock (enhanced geothermal system) and its geological background. Geol Rev, 2019, 65(6): 1462 doi: 10.16509/j.georeview.2019.06.013

    毛翔, 國殿斌, 羅璐, 等. 世界干熱巖地熱資源開發進展與地質背景分析. 地質論評, 2019, 65(6):1462 doi: 10.16509/j.georeview.2019.06.013
    [46] ásmundsson R, Pezard P, Sanjuan B, et al. High temperature instruments and methods developed for supercritical geothermal reservoir characterisation and exploitation—The HiTI project. Geothermics, 2014, 49: 90 doi: 10.1016/j.geothermics.2013.07.008
    [47] Moore J, McLennan J, Allis R, et al. The Utah frontier observatory for geothermal research (FORGE): results of recent drilling and geoscientific surveys // Geothermal Resources Council 42nd Annual Meeting-Geothermal Energy. Reno, 2018(42): 1034044
    [48] Xing P J, McLennan J, Moore J. In-situ stress measurements at the Utah frontier observatory for research in geothermal energy (FORGE) site. Energies, 2020, 13(21): 5842 doi: 10.3390/en13215842
    [49] Zhao J, Tang C A, Wang S J. Excavation based enhanced geothermal system (EGS-E): Introduction to a new concept. Geomech Geophys Geo-energ Geo-resour. 2020, 6(1): 6
    [50] Tang C A, Zhao J, Wang S J. An EGS-E conceptual model of enhanced geothermal system based on excavation technology. Geotherm Energy, 2019(1): 17

    唐春安, 趙堅, 王思敬. 基于開挖技術的增強型地熱系統EGS-E概念模型. 地熱能, 2019(1):17
    [51] Cai M F, Dor J, Chen X S, et al. Development strategy for Co-mining of the deep mineral and geothermal resources. Strateg Study CAE, 2021, 23(6): 43

    蔡美峰, 多吉, 陳湘生, 等. 深部礦產和地熱資源共采戰略研究. 中國工程科學, 2021, 23(6):43
    [52] Cai M F, Xue D L, Ren F H. Current status and development strategy of metal mines. Chin J Eng, 2019, 41(4): 417

    蔡美峰, 薛鼎龍, 任奮華. 金屬礦深部開采現狀與發展戰略. 工程科學學報, 2019, 41(4):417
    [53] Guo Q F, Cai M F, Wu X H, et al. Technological strategies for intelligent mining subject to multifield couplings in deep metal mines toward 2035. Chin J Eng, 2022, 44(4): 476

    郭奇峰, 蔡美峰, 吳星輝, 等. 面向2035年的金屬礦深部多場智能開采發展戰略. 工程科學學報, 2022, 44(4):476
    [54] Song J, Tang C A, Kang F C. Synergetic mining mode of deep mineral and geothermal resources. Met Mine, 2020(5): 124

    宋健, 唐春安, 亢方超. 深部礦產與地熱資源協同開采模式. 金屬礦山, 2020(5):124
  • 加載中
圖(5) / 表(4)
計量
  • 文章訪問數:  827
  • HTML全文瀏覽量:  519
  • PDF下載量:  155
  • 被引次數: 0
出版歷程
  • 收稿日期:  2022-04-07
  • 網絡出版日期:  2022-06-09
  • 刊出日期:  2022-10-25

目錄

    /

    返回文章
    返回