Occurrence characteristics, development status, and prospect of deep high-temperature geothermal resources in China
-
摘要: 地熱資源具有儲量大、能源利用效率高、運行成本低和節能減排等優點,是唯一不受天氣、季節變化影響的地球本土可再生清潔能源,對于實現雙碳目標有重要意義。為了解中深層地熱資源賦存特征和發展現狀,系統梳理了國外中深層高溫地熱資源的發展歷程和最新進展,并與我國中深層地熱資源開發情況進行對比分析,以期為我國中深層地熱資源開發利用提供借鑒和啟示。總體來講,我國傳統水熱型地熱資源潛力巨大且開發程度不高,具有很大的開發空間;針對我國地熱流體中伴生礦產資源的相關開發依然存在著稀有元素分布特征不清、潛力不明、整體開發利用程度不高等問題,應在評估地熱流體中伴生礦產資源潛力基礎上,進一步加強地熱流體中伴生礦產資源的綜合開發利用;隨著礦產資源開采深度的加大和高溫地熱帶周邊相關工程建設的開展,高溫熱害成為不可忽視的問題。但目前深部礦井和工程建設中“熱害資源化”的研究相對不足,造成了地熱資源的浪費,應在“熱害資源化”潛力評估的基礎上,進一步推動“礦?熱共采”及工程建設中的“熱害資源化”利用。Abstract: The geothermal resource has some advantages in energy-saving and emission-reduction. They include enormous reserves, high energy utilization efficiency, and low-cost operation and have played an important role in achieving the targets of carbon peak and carbon neutrality as the only renewable-clean energy on the planet that is not affected by weather and seasons. A systematical analysis of the developing courses and new progress of foreign countries’ middle-deep high-temperature geothermal resources was carried out to analyze the occurrence characteristics and development status of high-temperature geothermal resources. Furthermore, in comparison to the development of high-temperature geothermal resources in China, several suggestions which may provide a reference for the utilization of middle-deep geothermal resources in China are put forward for the actual demands. Conventional hydrothermal geothermal resources in China generally have mature power technology and significant potential. However, in comparison to the total resources, geothermal resources in China have a low development degree and significant development potential. Significantly, a variety of rare mineral resources are associated with geothermal fluids in China, but some issues exist in the development of the associated mineral resources in high-temperature geothermal fluids, such as unclear trace element distribution and development potential, resulting in a low level of resource development. Consequently, based on the potential evaluation of the associated mineral resources, comprehensive utilization of the associated mineral resources in deep geothermal fluids should be strengthened. High-temperature heat harm has become a significant problem as engineering construction in the high-temperature geothermal area has advanced, and the mining depth of mineral resources has gradually increased. The high-temperature heat harm not only has a serious impact on the health of workers but also impedes the construction process and raises costs. However, the resource attribute of high-temperature heat harm, on the other hand, has received little attention. Hence, there is relatively little research on the “resource utilization of heat energy” in deep mines and engineering construction, resulting in the waste of geothermal resources. Based on the potential evaluation of “heat harm resources,” more attention should be paid to the utilization of “heat harm resources” in engineering construction and “ore-thermal co-mining” in deep mines, as well as actively developing high-temperature heat harm resource utilization technology. In general, more attention should be paid to the development of China’s middle-depth geothermal resources. The development of an enhanced geothermal system based on conventional hydrothermal geothermal resources could be more effective. Furthermore, geothermal resource utilization should not be limited to geothermal fluid; associated mineral resources and high-temperature heat-harm resources have enormous resource potential as well.
-
表 1 世界典型“傳統水熱型”高溫地熱發電站
Table 1. World’s typical “conventional hydrothermal” high-temperature geothermal power plants
Name Country Location Reservoir
temperature/℃Type Medium Installed capacity/MW Start
dateStatus Remarks Larderello Italy Tuscany 350 Magmatic type Dry steam 769 1913 Ongoing The oldest geothermal
power plantWairakei New Zealand Pauto, North Island 266 Modern
volcanic typeWet steam 140 1958 Ongoing The first wet steam
geothermal power plantGaithers America Sonoma, CA 250 Magmatic type Dry steam 200 1960 Ongoing The first geothermal power
plant in AmericaTiwi Philippines Albay Province 315 Magmatic type Wet steam 330 1979 Ongoing The largest geothermal power
plant in the PhilippinesOlkaria Kenya Hell’s Gate National Park 235 Modern
volcanic typeHot water 727 1981 Ongoing The largest geothermal power
plant in AfricaHellisheiei Iceland Henger >230 Modern
volcanic typeHot water and steam 303 2006 Ongoing The largest geothermal power
plant in IcelandDarajat Indonesia Pasirwangi District, garut,
West Java225?245 Modern
volcanic typeDry steam 255 2007 Ongoing The second-largest geothermal
power plant in IndonesiaSarulla Indonesia Tapanuli Utara
North Sumatra province>250 Modern
volcanic typeHot water 330 2017 Ongoing The largest geothermal power
plant in Indonesia -
參考文獻
[1] Lin B Q, Li Z. Towards world's low carbon development: The role of clean energy. Appl Energy, 2022, 307: 118160 doi: 10.1016/j.apenergy.2021.118160 [2] Dincer I, Rosen M A. Exergy Analysis of Heating, Refrigerating and Air Conditioning: Methods and Applications. Amsterdam: Elsevier, 2015 [3] Lund J W, Boyd T L. Direct utilization of geothermal energy 2015 worldwide review. Geothermics, 2016, 60: 66 doi: 10.1016/j.geothermics.2015.11.004 [4] Muffler L J P. Tectonic and hydrologic control of the nature and distribution of geothermal resources. Geo-Heat Center Quarterly Bulletin, 1993, 15(2): 5462134 [5] Muffler P, Cataldi R. Methods for regional assessment of geothermal resources. Geothermics, 1978, 7(2-4): 53 doi: 10.1016/0375-6505(78)90002-0 [6] Hochstein M P. Classification and assessment of geothermal resources In: Dickson M H and Fanelli M, ed. Small Geothermal Resources-A Guide to Development and Utilization. Rome:UNITAR/UNDP Centre on Small Energy Sources, 1990: 31 [7] Ministry of Land and Resources of the People's Republic of China. GB/T11615—2010 Geologic Exploration Standard of Geothermal Resources. Beijing: Standards Press of China, 2010中華人民共和國國土資源部. GB/T11615—2010地熱資源地質勘查規范. 北京: 中國標準出版社, 2010 [8] Zhou Y, Deng N D, Wang F, et al. Fractal theory of suitability zoning structure of shallow geothermal energy. China Geol Surv China, 2017, 4(1): 18周陽, 鄧念東, 王鳳, 等. 淺層地熱能適宜性分區結構的分形原理. 中國地質調查, 2017, 4(1):18 [9] Dor J. The basic characteristics of the Yangbajing geothermal field—A typical high temperature geothermal system. Eng Sci, 2003, 5(1): 42 doi: 10.3969/j.issn.1009-1742.2003.01.008多吉. 典型高溫地熱系統——羊八井熱田基本特征. 中國工程科學, 2003, 5(1):42 doi: 10.3969/j.issn.1009-1742.2003.01.008 [10] Zhang S Q, Li X F, Song J, et al. Analysis on geophysical evidence for existence of partial melting layer in crust and regional heat source mechanism for hot dry rock resources of Gonghe Basin. Earth Sci, 2021, 46(4): 1416張森琦, 李旭峰, 宋健, 等. 共和盆地殼內部分熔融層存在的地球物理證據與干熱巖資源區域性熱源分析. 地球科學, 2021, 46(4):1416 [11] Dor J, Wang G L, Zheng K Y. Study on the Development and Utilization Strategy of Geothermal Resources in China. Beijing: Science Press, 2017多吉, 王貴玲, 鄭克棪. 中國地熱資源開發利用戰略研究. 北京: 科學出版社, 2017 [12] Brown D. The US hot dry rock program-20 years of experience in reservoir testing // Proceedings of World Geothermal Congress. Florence, 1995, 4: 2607 [13] Hashizume R. Study of hot dry rock geothermal power plant in the kansai area // Proceedings of World Geothermal Congress. Florence, 1995, 3: 2685 [14] Edwards B, Douglas J. Selecting ground-motion models developed for induced seismicity in geothermal areas. Geophys J Int, 2013, 195(2): 1314 doi: 10.1093/gji/ggt310 [15] H?ring M O, Schanz U, Ladner F, et al. Characterisation of the Basel 1 enhanced geothermal system. Geothermics, 2008, 37(5): 469 doi: 10.1016/j.geothermics.2008.06.002 [16] Li D W, Wang Y X. Major issues of research and development of hot dry rock geothermal energy. Earth Sci, 2015, 40(11): 1858李德威, 王焰新. 干熱巖地熱能研究與開發的若干重大問題. 地球科學, 2015, 40(11):1858 [17] Luo C X. New trends in global geothermal power generation. Sino-Global Energy, 2016, 21(5): 21羅承先. 世界地熱發電開發新動向. 中外能源, 2016, 21(5):21 [18] Luo C X. Geothermal power generation in Japan today and what can be learned for China. Sino-Global Energy, 2015, 20(12): 28羅承先. 日本地熱發電開發現狀及啟示. 中外能源, 2015, 20(12):28 [19] Gutierrez-Negrin L C A, Felix I C, Romo-Jones J M, et al. Geothermal energy in Mexico: Update and perspectives // Proceedings World Geothermal Congress 2020. Reykjavik, 2020: 1 [20] Boston. The Future of Geothermal Energy: Impact of Enhanced Geothermal Systems (EGS) on the United States in the 21st Century. USA: Massachusetts Institute of Technology, 2006 [21] Ma S Y. Li Siguang and China energy // First Symposium on Earth Science and Culture and the 17th Annual Academic Meeting of the Professional Committee of Chinese Geological History. Beijing, 2005: 249馬勝云. 李四光與中國能源//首屆地球科學與文化學術研討會暨中國地質學史專業委員會第17屆學術年會. 北京, 2005:249 [22] Xu M J, Luo C H, Li S Z. Geothermal resources and the continuous operation of power station the last decade in fengshun County, Guangdong Province. Acta Energiae Solaris Sin, 1995, 16(1): 121徐名捷, 羅楚豪, 李頌哲. 廣東省豐順縣的地熱資源及地熱電站. 太陽能學報, 1995, 16(1):121 [23] Dor j, Zeng Y, Jiao X Y, et al. Review and reflection on geothermal power generation in Tibet // Development and Protection of Geothermal Resources in China-Proceedings of the National Symposium on the Development, Utilization and Protection of Geothermal Resources. Beijing, 2007: 46多吉, 曾毅, 焦興義, 等. 西藏地熱發電的回顧與思考//中國地熱資源開發與保護—全國地熱資源開發利用與保護考察研討會論文集. 北京, 2007: 46 [24] Zhao X, Yang Y, Liu Y H, et al. Development trend and outlook of geothermal industry in the world. World Petroleum Ind, 2020, 27(1): 53趙旭, 楊艷, 劉雨虹, 等. 全球地熱產業現狀與技術發展趨勢. 世界石油工業, 2020, 27(1):53 [25] Li C H. Types and development prospects of geothermal resources. Manage Strategy Qinghai Land Resour, 2014(4): 48 doi: 10.3969/j.issn.1671-8704.2014.04.019李長輝. 地熱資源類型及發展前景. 青海國土經略, 2014(4):48 doi: 10.3969/j.issn.1671-8704.2014.04.019 [26] Mao H J, Ma H W. Discussion on the technology of enhanced geothermal generation and its application prospect in Guangdong province. Energy Eng, 2010(5): 25 doi: 10.3969/j.issn.1004-3950.2010.05.006毛宏舉, 馬洪偉. 增強型地熱發電技術及廣東省應用前景分析. 能源工程, 2010(5):25 doi: 10.3969/j.issn.1004-3950.2010.05.006 [27] Xu T F, Zhang W. Enhanced Geothermal Systems: International developments and China's prospects. Pet Sci Bull, 2016, 1(1): 38許天福, 張煒. 增強型地熱工程國際發展和我國前景展望. 石油科學通報, 2016, 1(1):38 [28] Lin W J, Wang G L, Shao J L, et al. Distribution and exploration of hot dry rock resources in China: Progress and inspiration. Acta Geol Sin, 2021, 95(5): 1366 doi: 10.3969/j.issn.0001-5717.2021.05.004藺文靜, 王貴玲, 邵景力, 等. 我國干熱巖資源分布及勘探: 進展與啟示. 地質學報, 2021, 95(5):1366 doi: 10.3969/j.issn.0001-5717.2021.05.004 [29] Zheng M P, Wang Q X, dor J. A New Type of Hydrothermal Deposit—Cesium-Baring Geyserite in Tibet. Beijing: Geological Publishing House, 1995鄭綿平, 王秋霞, 多吉. 水熱成礦新類型−西藏銫硅華礦床. 北京: 地質出版社, 1995 [30] Zheng M P, Zheng Y, Liu J. The new discoveries of saline lacks and geothermal ore deposits on the Qinghai-Tibet Plateau. J Chin Acad Geol Sci, 1990(1): 151鄭綿平, 鄭元, 劉杰. 青藏高原鹽湖及地熱礦床的新發現. 中國地質科學院院報, 1990(1):151 [31] Luo Y B, Zheng M P, Ren Y Q. Metallogenic correlation of special salt lake and hydrotherm, Qinghai-Tibet Plateau, China. Sci Technol Rev, 2017, 35(12): 44雒洋冰, 鄭綿平, 任雅瓊. 青藏高原特種鹽湖與深部火山-地熱水的相關性. 科技導報, 2017, 35(12):44 [32] Dor J, Wen C Q, Liu J L, et al. Discovery of the Mayum placer gold deposit, Burang County, Tibet, and its significance. Reg Geo China, 2003, 22(Suppl 1): 896多吉, 溫春齊, 劉建林, 等. 西藏普蘭縣馬攸木砂金礦床的發現及其意義. 地質通報, 2003, 22(增刊1): 896 [33] Guo J C, Dor J, Wen C Q, et al. Mineralization background and stages of the Mayum gold deposit, Xizang. Sediment Geol Tethyan Geol, 2006, 26(1): 60 doi: 10.3969/j.issn.1009-3850.2006.01.010郭建慈, 多吉, 溫春齊, 等. 西藏馬攸木金礦成礦背景與成礦階段. 沉積與特提斯地質, 2006, 26(1):60 doi: 10.3969/j.issn.1009-3850.2006.01.010 [34] Munk L A, Hynek S A, Bradley D C, et al. Lithium brines: A global perspective. Rev Econ Geol, 2016, 18: 339 [35] Wang Q S, Yuan C H, Xu H. Analysis of the global lithium resource distribution and potential. China Min Mag, 2015, 24(2): 10 doi: 10.3969/j.issn.1004-4051.2015.02.005王秋舒, 元春華, 許虹. 全球鋰礦資源分布與潛力分析. 中國礦業, 2015, 24(2):10 doi: 10.3969/j.issn.1004-4051.2015.02.005 [36] Bradley D, Munk L A, Jochens H, et al. A Preliminary Deposit Model for Lithium Brines. Virginia: U. S. Geological Survey, 2013 [37] Cetiner Z S, Do?an ?, ?zdilek G, et al. Toward utilising geothermal waters for cleaner and sustainable production: Potential of Li recovery from geothermal brines in Turkey. Int J Glob Warming, 2015, 7(4): 439 doi: 10.1504/IJGW.2015.070045 [38] Dor J, Li M L, Deng T L, et al. Investigation, Evaluation and Extraction of Lithium Resources in Key Lithium Bearing Geothermal Activity Areas in Tibet. Lhasa: Tibet Bureau of Geology and Mineral Exploration and Development, 2021多吉, 李明禮, 鄧天龍, 等. 西藏重點含鋰地熱活動區鋰資源調查評估與提取試驗研究. 拉薩: 西藏地質礦產勘查開發局, 2021 [39] Li Z Q, Hou Z Q, Nie F J, et al. Enrichment of element cesium during modern geothermal action in Tibet,. China Acta Geol Sin, 2006, 80(9): 1457 doi: 10.3321/j.issn:0001-5717.2006.09.019李振清, 侯增謙, 聶鳳軍, 等. 西藏地熱活動中銫的富集過程探討. 地質學報, 2006, 80(9):1457 doi: 10.3321/j.issn:0001-5717.2006.09.019 [40] Stringfellow W T, Dobson P F. Technology for the recovery of lithium from geothermal brines. Energies, 2021, 14(20): 6805 doi: 10.3390/en14206805 [41] Tong W, Liao Z J, Liu S B, et al. Hot Springs in Tibet. Beijing, Science Press, 1999佟偉, 廖志杰, 劉時斌, 等. 西藏溫泉志. 北京: 科學出版社, 1999 [42] Guo P Y, Qin F. Preventive measures against heat hazard and its utilization in Zhangshuanglou Coal Mine. J China Coal Soc, 2013, 38(Suppl 2): 393郭平業, 秦飛. 張雙樓煤礦深井熱害控制及其資源化利用技術應用. 煤炭學報, 2013, 38(增刊2): 393 [43] Kranz K, Dillenardt J. Mine water utilization for geothermal purposes in freiberg, Germany: Determination of hydrogeological and thermophysical rock parameters. Mine Water Environ, 2010, 29(1): 68 doi: 10.1007/s10230-009-0094-4 -