Optimization of capacity continuity during the deep-area transition for an underground metal mine
-
摘要: 為了實現金屬地下礦山開采由淺部轉向深部過程中產能平穩接續,以三山島金礦為研究對象,結合礦山多區段聯合開采的復雜生產格局,綜合考慮產能均衡、品位均衡與各項生產系統能力限制等約束,構建以多礦區資源綜合開采價值最大為目標的產能接續規劃優化模型,在Python和Gurobi環境下實現優化模型構建與解算。優化結果表明,通過對礦山深部轉產過程中的產能接續進行規劃優化,得到的最佳產能接續與生產任務分配方案可以在有效保證多礦區協同開采、產能均衡穩定的同時,提升礦山開采的綜合經濟效益。Abstract: With the rapid depletion of shallow mineral resources, an increasing number of mines are stepping into deep mining to ensure resource continuity, which generally forms a coordinated production model that includes both existing shallow production systems and new deep projects. Given the complex production patterns of both multi-mining areas and multi-sections formed during the process of deep mining, how to achieve geological resource continuity, stable production capacity, balanced supply grade, and sustainable economic benefits are the key issue to be addressed in the mining scheme during the transition to deep-area. When an underground mine transitions to deep mining, it is necessary to steadily advance the production task and maintain the steady growth of metal quantity and economic benefit. Therefore, to maintain production continuity and stability, it is necessary to optimize the production plan for underground metal mines. Considering the situation of multi-section mining submontanely, the Sanshandao gold mine is used as a case study to investigate the complex production layout of multi-section mining simultaneously subjected to constraints of production capacity balance, grade requirements, and other production system capacities through in-depth analysis of the production capacity continuity in the process of mining transition to deep mineral resources. An optimization model is constructed aiming at maximizing the comprehensive resource exploitation value of multi-section mining. A mathematical planning model for the continuation and optimal allocation of production capacity during the transition period of deep mining is constructed with the optimization goal of maximizing the comprehensive exploitation return of resources from multiple mining areas, taking the constraints of overall capacity succession, balanced output grade, and capacity limits of each mining area into account. Following the solution of the Sanshandao gold mine’s production capacity, succession during the transition to deep-area is obtained. The model considers the coordination and succession of multiple mining areas and sections in terms of time and space, and it achieves a smooth production system transition from shallow to deep areas through accurate evaluation of existing operation conditions and optimal allocation of production factors, all while ensuring the production tasks and economic efficiency targets are met. The optimization model is programmed in Python, and it is solved using the Gurobi software. The results show that the best capacity continuation and production task allocation schemes are obtained to effectively ensure benefit improvement as well as production capacity balance and stability. The example application validates the scientific and efficacy of the optimization model, which can be used by other mines to optimize production plans when switching to deep mining.
-
表 1 開采技術經濟指標表
Table 1. Mining technical and economic parameters
Indicators Unit Xinli section Xinli deep section Xishan section Xishan deep section Xiling section Reserve 107 t 1.814 1.255 0.239 0.325 8.426 Average grade g·t–1 2.35 3.32 2.08 3.22 4.18 Cost per ton ¥·t–1 380 403.8 380 531.65 516.19 Loss rate % 8 9.41 8 9.25 9.99 Dilution rate % 5 10 5 10 8 Maximum lift capacity 106 t·a–1 3.3 1.65 3.3 Maximum processing capacity 106 t·a–1 3.3 1.65 Recovery rate % 95.89 96 Maximum grade g·t–1 4.6 Minimum grade g·t–1 2.0 Discounted rate % 10 表 2 基于均值回歸運動模型的黃金價格預測結果
Table 2. Prediction results of gold price based on the mean regression motion model
Year Price/(¥·g–1) Year Price/(¥·g–1) Year Price/(¥·g–1) 1 366.7 14 273.6 27 261.0 2 340.5 15 273.4 28 264.2 3 326.9 16 271.5 29 264.7 4 314.9 17 269.8 30 263.2 5 303.3 18 268.2 31 269.0 6 293.3 19 263.8 32 260.7 7 287.5 20 266.1 33 262.1 8 279.9 21 269.3 34 257.0 9 279.4 22 267.6 35 256.2 10 274.9 23 262.4 36 257.8 11 279.3 24 260.5 37 260.9 12 283.0 25 257.5 38 258.5 13 280.1 26 261.0 39 260.4 -
參考文獻
[1] Li G Q, Wang H, Hou J, et al. Progress of intelligent technology in underground metal mines. Met Mine, 2021(11): 1李國清, 王浩, 侯杰, 等. 地下金屬礦山智能化技術進展. 金屬礦山, 2021(11):1 [2] Hou Z M, Wen C Y, Bi J C. Discussion on production succession Scheme during transition period from Open Pit to Underground Mining in MKTK. World Nonferrous Met, 2019(15): 230 doi: 10.3969/j.issn.1002-5065.2019.15.138侯正敏, 文長遠, 畢建春. MKTK露天轉地下開采過渡期生產接續方案探討. 世界有色金屬, 2019(15):230 doi: 10.3969/j.issn.1002-5065.2019.15.138 [3] Wang G M, Chen J H, Liu L. A review on optimization criteria of production scale for modern mine. Min Res Dev, 2012, 32(5): 1王革民, 陳建宏, 劉浪. 現代礦山開采生產規模優化準則綜述. 礦業研究與開發, 2012, 32(5):1 [4] Hou J, Hu N L, Li G Q, et al. Dynamic optimization of production plans for multi-metal underground mines. Chin J Eng, 2016, 38(4): 453侯杰, 胡乃聯, 李國清, 等. 多金屬地下礦山生產計劃動態優化. 工程科學學報, 2016, 38(4):453 [5] Zhang L, Dai B B, Wang Y M, et al. Study on economic dynamic assessment optimization technology of production capacity open-pit mine: A case study of dongjielegele iron mine in Baiyunebo. Met Mine, 2018(11): 13章林, 代碧波, 王運敏, 等. 露天礦生產規模優化的經濟動態評估方法—以白云鄂博東介勒格勒鐵礦為例. 金屬礦山, 2018(11):13 [6] Khaboushan A S, Osanloo M. A set of classified integer programming (IP) models for optimum transition from open pit to underground mining methods. Nat Resour Res, 2020, 29(3): 1543 doi: 10.1007/s11053-019-09551-z [7] Khaboushan A S, Osanloo M. Semi-symmetrical production scheduling of an orebody for optimizing the depth of transitioning from open pit to block caving. Resour Policy, 2020, 68: 101700 doi: 10.1016/j.resourpol.2020.101700 [8] King B, Goycoolea M, Newman A. Optimizing the open pit-to-underground mining transition. Eur J Oper Res, 2017, 257(1): 297 doi: 10.1016/j.ejor.2016.07.021 [9] MacNeil J A L, Dimitrakopoulos R G. A stochastic optimization formulation for the transition from open pit to underground mining. Optim Eng, 2017, 18(3): 793 doi: 10.1007/s11081-017-9361-6 [10] Bakhtavar E, Abdollahisharif J, Aminzadeh A. A stochastic mathematical model for determination of transition time in the non-simultaneous case of surface and underground mining. J South Afr Inst Min Metall, 2017, 117(12): 1145 [11] Afum B O, Ben-Awuah E, Askari-Nasab H. A mixed integer linear programming framework for optimising the extraction strategy of open pit - underground mining options and transitions. Int J Min Reclam Environ, 2020, 34(10): 700 doi: 10.1080/17480930.2019.1701968 [12] Opoku S, Musingwini C. Stochastic modelling of the open pit to underground transition interface for gold mines. Int J Min Reclam Environ, 2013, 27(6): 407 doi: 10.1080/17480930.2013.795341 [13] Bakhlavar E, Shahriar K, Mirhassani A. Optimization of the transition from open-pit to underground operation in combined mining using (0-1) integer programming. J S Afr N Inst Min Metall, 2012, 112(12): 1059 [14] Newman A M, Yano C A, Rubio E. Mining above and below ground: Timing the transition. IIE Trans, 2013, 45(8): 865 doi: 10.1080/0740817X.2012.722810 [15] Whittle D, Brazil M, Grossman P A, et al. Combined optimisation of an open-pit mine outline and the transition depth to underground mining. Eur J Oper Res, 2018, 268(2): 624 doi: 10.1016/j.ejor.2018.02.005 [16] Jin F Y, Cui S, Zhou Y C. Study on capacity connection scheme of open-pit underground combined mining in a mine. China Min Mag, 2021, 30(Sup 2): 246金鳳英, 崔松, 周玉成. 某礦山露天-地下聯合開采產能銜接方案研究. 中國礦業, 2021, 30(S2): 246 [17] Li Z Y, Wang H. Study on the interaction between open-pit mining and underground mining. Min Res Dev, 2021, 41(8): 12李再揚, 王鴻. 露天地下聯合開采的相互影響研究. 礦業研究與開發, 2021, 41(8):12 [18] Liu H Z, Zhang H L. The practice of open pit mining into underground mining in phase Ⅱ of Heilongshan iron mine. Min Eng, 2021, 19(4): 19劉懷智, 張洪雷. 黑龍山鐵礦二期露天轉地下開采實踐. 礦業工程, 2021, 19(4):19 [19] Zeng H J. Dimine 3d mining software application in the open-air underground combined mining. World Nonferrous Met, 2018(2): 71曾華姣. Dimine三維礦業軟件在露天地下聯合開采中的應用. 世界有色金屬, 2018(2):71 [20] Roberts B, Elkington T, van Olden K, et al. Optimising combined open pit and underground strategic plan. Min Technol, 2013, 122(2): 94 doi: 10.1179/1743286313Y.0000000038 [21] Chen Z Q, Wang L G, Xiong S M, et al. Optimization analysis of mining capacity allocation scheme based on fuzzy predictive linear programming. J Central South Univ (Sci Technol) , 2014, 45(9): 3166陳忠強, 王李管, 熊書敏, 等. 基于模糊預測性線性規劃的礦山產能分配方案優化分析. 中南大學學報(自然科學版), 2014, 45(9):3166 [22] Luo Z Q, Guan J L, Wang Y W, et al. Production scale optimization determination method of underground metal mine. J Central South Univ (Sci Technol) , 2013, 44(7): 2875羅周全, 管佳林, 王益偉, 等. 地下金屬礦山生產規模優化確定方法. 中南大學學報(自然科學版), 2013, 44(7):2875 [23] Jin J N. Application of linear programming in stable production of mines. West China Explor Eng, 2006, 18(11): 57 doi: 10.3969/j.issn.1004-5716.2006.11.031金京男. 線性規劃在礦山穩產方面的利用. 西部探礦工程, 2006, 18(11):57 doi: 10.3969/j.issn.1004-5716.2006.11.031 [24] Xu H. Optimization of Productivity and Mining Planning in Underground Metal Mines [Dissertation]. Changsha: Central South University, 2012徐海. 地下金屬礦山產能優化及開采規劃[學位論文]. 長沙: 中南大學, 2012 -