<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

金屬地下礦山深部轉產過程中的產能接續優化

侯杰 李國清 修國林 胡乃聯 強興邦

侯杰, 李國清, 修國林, 胡乃聯, 強興邦. 金屬地下礦山深部轉產過程中的產能接續優化[J]. 工程科學學報, 2023, 45(5): 693-700. doi: 10.13374/j.issn2095-9389.2022.03.24.002
引用本文: 侯杰, 李國清, 修國林, 胡乃聯, 強興邦. 金屬地下礦山深部轉產過程中的產能接續優化[J]. 工程科學學報, 2023, 45(5): 693-700. doi: 10.13374/j.issn2095-9389.2022.03.24.002
HOU Jie, LI Guo-qing, XIU Guo-lin, HU Nai-lian, QIANG Xing-bang. Optimization of capacity continuity during the deep-area transition for an underground metal mine[J]. Chinese Journal of Engineering, 2023, 45(5): 693-700. doi: 10.13374/j.issn2095-9389.2022.03.24.002
Citation: HOU Jie, LI Guo-qing, XIU Guo-lin, HU Nai-lian, QIANG Xing-bang. Optimization of capacity continuity during the deep-area transition for an underground metal mine[J]. Chinese Journal of Engineering, 2023, 45(5): 693-700. doi: 10.13374/j.issn2095-9389.2022.03.24.002

金屬地下礦山深部轉產過程中的產能接續優化

doi: 10.13374/j.issn2095-9389.2022.03.24.002
基金項目: 國家自然科學基金資助項目(52074022); 中央高校基本科研業務費專項資金資助項目(FRF-TP-20-001A1)
詳細信息
    通訊作者:

    E-mail: qqlee@ustb.edu.cn

  • 中圖分類號: TD982

Optimization of capacity continuity during the deep-area transition for an underground metal mine

More Information
  • 摘要: 為了實現金屬地下礦山開采由淺部轉向深部過程中產能平穩接續,以三山島金礦為研究對象,結合礦山多區段聯合開采的復雜生產格局,綜合考慮產能均衡、品位均衡與各項生產系統能力限制等約束,構建以多礦區資源綜合開采價值最大為目標的產能接續規劃優化模型,在Python和Gurobi環境下實現優化模型構建與解算。優化結果表明,通過對礦山深部轉產過程中的產能接續進行規劃優化,得到的最佳產能接續與生產任務分配方案可以在有效保證多礦區協同開采、產能均衡穩定的同時,提升礦山開采的綜合經濟效益。

     

  • 圖  1  三山島金礦礦石流向示意圖

    Figure  1.  Schematic of the ore flow direction for Sanshandao gold mine

    圖  2  各礦區資源賦存條件

    Figure  2.  Resource condition of each mining section

    圖  3  多礦區同時開采的礦石流圖

    Figure  3.  Ore flow diagram of simultaneous mining in multiple sections

    圖  4  Python和Gurobi建模環境下的模型求解流程

    Figure  4.  Modeling and solving process in Python and Gurobi software

    圖  5  規劃期內各年各礦區礦石產量結果統計

    Figure  5.  Annual ore output of each mining area during the planning period

    圖  6  規劃期內各年各礦區凈現金收益結果統計

    Figure  6.  Annual net present value of each mining area during the planning period

    圖  7  規劃期內新立選廠礦石處理量、入選品位結果統計

    Figure  7.  Processing capacity and ore grade per year of Xinli processing plant during the planning period

    圖  8  規劃期內西山選廠礦石處理量、入選品位結果統計

    Figure  8.  Processing capacity and ore grade per year of Xishan processing plant during the planning period

    表  1  開采技術經濟指標表

    Table  1.   Mining technical and economic parameters

    IndicatorsUnitXinli sectionXinli deep sectionXishan sectionXishan deep sectionXiling section
    Reserve107 t1.8141.2550.2390.3258.426
    Average gradeg·t–12.353.322.083.224.18
    Cost per ton¥·t–1380403.8380531.65516.19
    Loss rate%89.4189.259.99
    Dilution rate%5105108
    Maximum lift capacity106 t·a–13.31.653.3
    Maximum processing capacity106 t·a–13.31.65
    Recovery rate%95.8996
    Maximum gradeg·t–14.6
    Minimum gradeg·t–12.0
    Discounted rate%10
    下載: 導出CSV

    表  2  基于均值回歸運動模型的黃金價格預測結果

    Table  2.   Prediction results of gold price based on the mean regression motion model

    YearPrice/(¥·g–1)YearPrice/(¥·g–1)YearPrice/(¥·g–1)
    1366.714273.627261.0
    2340.515273.428264.2
    3326.916271.529264.7
    4314.917269.830263.2
    5303.318268.231269.0
    6293.319263.832260.7
    7287.520266.133262.1
    8279.921269.334257.0
    9279.422267.635256.2
    10274.923262.436257.8
    11279.324260.537260.9
    12283.025257.538258.5
    13280.126261.039260.4
    下載: 導出CSV
    久色视频
  • [1] Li G Q, Wang H, Hou J, et al. Progress of intelligent technology in underground metal mines. Met Mine, 2021(11): 1

    李國清, 王浩, 侯杰, 等. 地下金屬礦山智能化技術進展. 金屬礦山, 2021(11):1
    [2] Hou Z M, Wen C Y, Bi J C. Discussion on production succession Scheme during transition period from Open Pit to Underground Mining in MKTK. World Nonferrous Met, 2019(15): 230 doi: 10.3969/j.issn.1002-5065.2019.15.138

    侯正敏, 文長遠, 畢建春. MKTK露天轉地下開采過渡期生產接續方案探討. 世界有色金屬, 2019(15):230 doi: 10.3969/j.issn.1002-5065.2019.15.138
    [3] Wang G M, Chen J H, Liu L. A review on optimization criteria of production scale for modern mine. Min Res Dev, 2012, 32(5): 1

    王革民, 陳建宏, 劉浪. 現代礦山開采生產規模優化準則綜述. 礦業研究與開發, 2012, 32(5):1
    [4] Hou J, Hu N L, Li G Q, et al. Dynamic optimization of production plans for multi-metal underground mines. Chin J Eng, 2016, 38(4): 453

    侯杰, 胡乃聯, 李國清, 等. 多金屬地下礦山生產計劃動態優化. 工程科學學報, 2016, 38(4):453
    [5] Zhang L, Dai B B, Wang Y M, et al. Study on economic dynamic assessment optimization technology of production capacity open-pit mine: A case study of dongjielegele iron mine in Baiyunebo. Met Mine, 2018(11): 13

    章林, 代碧波, 王運敏, 等. 露天礦生產規模優化的經濟動態評估方法—以白云鄂博東介勒格勒鐵礦為例. 金屬礦山, 2018(11):13
    [6] Khaboushan A S, Osanloo M. A set of classified integer programming (IP) models for optimum transition from open pit to underground mining methods. Nat Resour Res, 2020, 29(3): 1543 doi: 10.1007/s11053-019-09551-z
    [7] Khaboushan A S, Osanloo M. Semi-symmetrical production scheduling of an orebody for optimizing the depth of transitioning from open pit to block caving. Resour Policy, 2020, 68: 101700 doi: 10.1016/j.resourpol.2020.101700
    [8] King B, Goycoolea M, Newman A. Optimizing the open pit-to-underground mining transition. Eur J Oper Res, 2017, 257(1): 297 doi: 10.1016/j.ejor.2016.07.021
    [9] MacNeil J A L, Dimitrakopoulos R G. A stochastic optimization formulation for the transition from open pit to underground mining. Optim Eng, 2017, 18(3): 793 doi: 10.1007/s11081-017-9361-6
    [10] Bakhtavar E, Abdollahisharif J, Aminzadeh A. A stochastic mathematical model for determination of transition time in the non-simultaneous case of surface and underground mining. J South Afr Inst Min Metall, 2017, 117(12): 1145
    [11] Afum B O, Ben-Awuah E, Askari-Nasab H. A mixed integer linear programming framework for optimising the extraction strategy of open pit - underground mining options and transitions. Int J Min Reclam Environ, 2020, 34(10): 700 doi: 10.1080/17480930.2019.1701968
    [12] Opoku S, Musingwini C. Stochastic modelling of the open pit to underground transition interface for gold mines. Int J Min Reclam Environ, 2013, 27(6): 407 doi: 10.1080/17480930.2013.795341
    [13] Bakhlavar E, Shahriar K, Mirhassani A. Optimization of the transition from open-pit to underground operation in combined mining using (0-1) integer programming. J S Afr N Inst Min Metall, 2012, 112(12): 1059
    [14] Newman A M, Yano C A, Rubio E. Mining above and below ground: Timing the transition. IIE Trans, 2013, 45(8): 865 doi: 10.1080/0740817X.2012.722810
    [15] Whittle D, Brazil M, Grossman P A, et al. Combined optimisation of an open-pit mine outline and the transition depth to underground mining. Eur J Oper Res, 2018, 268(2): 624 doi: 10.1016/j.ejor.2018.02.005
    [16] Jin F Y, Cui S, Zhou Y C. Study on capacity connection scheme of open-pit underground combined mining in a mine. China Min Mag, 2021, 30(Sup 2): 246

    金鳳英, 崔松, 周玉成. 某礦山露天-地下聯合開采產能銜接方案研究. 中國礦業, 2021, 30(S2): 246
    [17] Li Z Y, Wang H. Study on the interaction between open-pit mining and underground mining. Min Res Dev, 2021, 41(8): 12

    李再揚, 王鴻. 露天地下聯合開采的相互影響研究. 礦業研究與開發, 2021, 41(8):12
    [18] Liu H Z, Zhang H L. The practice of open pit mining into underground mining in phase Ⅱ of Heilongshan iron mine. Min Eng, 2021, 19(4): 19

    劉懷智, 張洪雷. 黑龍山鐵礦二期露天轉地下開采實踐. 礦業工程, 2021, 19(4):19
    [19] Zeng H J. Dimine 3d mining software application in the open-air underground combined mining. World Nonferrous Met, 2018(2): 71

    曾華姣. Dimine三維礦業軟件在露天地下聯合開采中的應用. 世界有色金屬, 2018(2):71
    [20] Roberts B, Elkington T, van Olden K, et al. Optimising combined open pit and underground strategic plan. Min Technol, 2013, 122(2): 94 doi: 10.1179/1743286313Y.0000000038
    [21] Chen Z Q, Wang L G, Xiong S M, et al. Optimization analysis of mining capacity allocation scheme based on fuzzy predictive linear programming. J Central South Univ (Sci Technol), 2014, 45(9): 3166

    陳忠強, 王李管, 熊書敏, 等. 基于模糊預測性線性規劃的礦山產能分配方案優化分析. 中南大學學報(自然科學版), 2014, 45(9):3166
    [22] Luo Z Q, Guan J L, Wang Y W, et al. Production scale optimization determination method of underground metal mine. J Central South Univ (Sci Technol), 2013, 44(7): 2875

    羅周全, 管佳林, 王益偉, 等. 地下金屬礦山生產規模優化確定方法. 中南大學學報(自然科學版), 2013, 44(7):2875
    [23] Jin J N. Application of linear programming in stable production of mines. West China Explor Eng, 2006, 18(11): 57 doi: 10.3969/j.issn.1004-5716.2006.11.031

    金京男. 線性規劃在礦山穩產方面的利用. 西部探礦工程, 2006, 18(11):57 doi: 10.3969/j.issn.1004-5716.2006.11.031
    [24] Xu H. Optimization of Productivity and Mining Planning in Underground Metal Mines [Dissertation]. Changsha: Central South University, 2012

    徐海. 地下金屬礦山產能優化及開采規劃[學位論文]. 長沙: 中南大學, 2012
  • 加載中
圖(8) / 表(2)
計量
  • 文章訪問數:  489
  • HTML全文瀏覽量:  155
  • PDF下載量:  124
  • 被引次數: 0
出版歷程
  • 收稿日期:  2022-03-24
  • 網絡出版日期:  2022-06-22
  • 刊出日期:  2023-05-01

目錄

    /

    返回文章
    返回