<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

多相混合滲流理論研究

朱維耀

朱維耀. 多相混合滲流理論研究[J]. 工程科學學報, 2023, 45(5): 833-839. doi: 10.13374/j.issn2095-9389.2022.03.16.002
引用本文: 朱維耀. 多相混合滲流理論研究[J]. 工程科學學報, 2023, 45(5): 833-839. doi: 10.13374/j.issn2095-9389.2022.03.16.002
ZHU Wei-yao. Study on the theory of multiphase mixed seepage in porous media[J]. Chinese Journal of Engineering, 2023, 45(5): 833-839. doi: 10.13374/j.issn2095-9389.2022.03.16.002
Citation: ZHU Wei-yao. Study on the theory of multiphase mixed seepage in porous media[J]. Chinese Journal of Engineering, 2023, 45(5): 833-839. doi: 10.13374/j.issn2095-9389.2022.03.16.002

多相混合滲流理論研究

doi: 10.13374/j.issn2095-9389.2022.03.16.002
基金項目: 國家自然科學基金(面上項目)資助項目(51974013)
詳細信息
    通訊作者:

    E-mail: weiyaook@sina.com

  • 中圖分類號: TE312

Study on the theory of multiphase mixed seepage in porous media

More Information
  • 摘要: 針對現有多相滲流理論假設各相均為連續相、無相間交換,不能表征相對滲透率端點附近出現非連續相,未能考慮多相混合、界面作用、相間傳質傳輸等多相摻混復雜流動的問題,本文把多相滲流流體作為一個總體即混合流體,研究多相流體在多孔介質中傳輸,包含不相溶、相界面變化、相間傳質傳輸、混合相,搞清各相間交換關系和流動機制,即多相混合流動規律。首先基于平衡熱力學第一、第二定律,考慮滲流過程中的多相體系平衡條件,推導出了滲流過程中多相體系平衡熱力學關系式,之后運用多相流體全質量守恒定律和滲流過程中多相體系平衡熱力學公式,建立了多相流體混合滲流理論模型,分析了多相混合滲流理論與傳統多相滲流理論的關系,提出了多相混合滲流的理論。指出多相體系流體總的滲流速度不僅與壓力梯度成正比,還與多相體系混合滲流程度有密切關系,其中混合滲流程度是飽和度、界面張力、壓力梯度和孔隙度的函數。研究結果表明,多相混合滲流理論深刻地反映了多相流體混合滲流的本質,揭示了多相流體混合滲流的內在作用變化規律,彌補了多相滲流理論用單相達西定律推廣到了多相滲流中的不足,多相混合滲流理論涵蓋了傳統多相滲流理論,具有重大的理論意義和應用價值。

     

  • 表  1  兩種理論的差異性對比

    Table  1.   Contrast between the two theories

    Mode of theoryAssumptionsPrinciplesCharacteristics of relative permeabilityApplicability
    Multiphase mixed seepage theoryThe mixed fluid phase is continuous, while the single fluid phase can be discontinuous.Law of conservation of mass, law of conservation of momentum, and laws of thermodynamics.The relative permeability is a function of saturation, capillary force, and the phase pressure gradient.Multiphase seepage containing discontinuous phases, immiscible fluids, phase interface conversion, interphase mass transfer, and mixing flow.
    Multiphase seepage theoryThe mixed fluid phase and single fluid phase are continuous.Law of conservation of mass and law of conservation of momentum.The relative permeability is only a function of saturation.Multiphase seepage based on continuous phase assumption with no immiscible fluids, phase interface conversion, interphase mass transfer, or mixing flow.
    下載: 導出CSV
    久色视频
  • [1] Wyckoff R D, Botset H G. The flow of gas-liquid mixtures through unconsolidated sands. Physics, 1936, 7(9): 325 doi: 10.1063/1.1745402
    [2] Yao Y Z, Freund W M, Zhang J, et al. Volume averaging effect in nonlinear processes of focused laser fields. J Chem Phys, 2021, 155(6): 064202 doi: 10.1063/5.0061038
    [3] Rose W. Measuring transport coefficients necessary for the description of coupled two-phase flow of immiscible fluids in porous media. Transp Porous Med, 1988, 3(2): 163 doi: 10.1007/BF00820343
    [4] Rose W. Data interpretation problems to be expected in the study of coupled fluid flow in porous media. Transp Porous Med, 1989, 4(2): 185 doi: 10.1007/BF00134996
    [5] Rose W. Lagrangian simulation of coupled two-phase flows. Math Geol, 1990, 22(6): 641 doi: 10.1007/BF00890513
    [6] Whitaker S. Flow in porous media II: The governing equations for immiscible, two-phase flow. Transp Porous Med, 1986, 1(2): 105 doi: 10.1007/BF00714688
    [7] Gao Y, Q Raeini A, Selem A, et al. Pore-scale imaging with measurement of relative permeability and capillary pressure on the same reservoir sandstone sample under water-wet and mixed-wet conditions. Adv Water Resour, 2020, 146: 103786 doi: 10.1016/j.advwatres.2020.103786
    [8] Ramakrishnan T S, Goode P A. Measurement of off-diagonal transport coefficients in two-phase flow in porous media. J Colloid Interface Sci, 2015, 449: 392 doi: 10.1016/j.jcis.2015.01.029
    [9] Li Y, Li H T, Chen S N, et al. The second critical capillary number for chemical flooding in low permeability reservoirs: Experimental and numerical investigations. Chem Eng Sci, 2018, 196: 202
    [10] Wang Y, Song R, Liu J J, et al. Pore scale investigation on scaling-up micro-macro capillary number and wettability on trapping and mobilization of residual fluid. J Contam Hydrol, 2019, 225: 103499 doi: 10.1016/j.jconhyd.2019.103499
    [11] Kovalev A V, Yagodnitsyna A A, Bilsky A V. Flow hydrodynamics of immiscible liquids with low viscosity ratio in a rectangular microchannel with T-junction. Chem Eng J, 2018, 352: 120 doi: 10.1016/j.cej.2018.07.013
    [12] Hosseini E, Hajivand F, Tahmasebi R. The effect of alkaline-surfactant on the wettability, relative permeability and oil recovery of carbonate reservoir rock: Experimental investigation. J Petrol Explor Prod Technol, 2019, 9(4): 2877 doi: 10.1007/s13202-019-0671-4
    [13] Song W H, Yao J, Ma J S, et al. Numerical simulation of multiphase flow in nanoporous organic matter with application to coal and gas shale systems. Water Resour Res, 2018, 54(2): 1077 doi: 10.1002/2017WR021500
    [14] Zheng B X, Chen Z. A multiphase smoothed particle hydrodynamics model with lower numerical diffusion. J Comput Phys, 2019, 382: 177 doi: 10.1016/j.jcp.2019.01.012
    [15] Ma T R, Zhang K N, Shen W J, et al. Discontinuous and continuous Galerkin methods for compressible single-phase and two-phase flow in fractured porous media. Adv Water Resour, 2021, 156: 104039 doi: 10.1016/j.advwatres.2021.104039
    [16] Bear J. Dynamics of Fluids in Porous Media. New York: Elsevier, 1972
    [17] Izadi M, Mohammadi S A, Mehryan S A M, et al. Thermogravitational convection of magnetic micropolar nanofluid with coupling between energy and angular momentum equations. Int J Heat Mass Transf, 2019, 145: 118748 doi: 10.1016/j.ijheatmasstransfer.2019.118748
    [18] Siddiqui M A Q, Serati M, Regenauer-Lieb K, et al. A thermodynamics-based multi-physics constitutive model for variably saturated fractured sorptive rocks. Int J Rock Mech Min Sci, 2022, 158: 105202 doi: 10.1016/j.ijrmms.2022.105202
    [19] Aghighi M A, Lv A, H Roshan. Non-equilibrium thermodynamics approach to mass transport in sorptive dual continuum porous media: A theoretical foundation and numerical simulation. J Nat Gas Sci Eng, 2021, 87: 103757 doi: 10.1016/j.jngse.2020.103757
    [20] Ayub M, Bentsen R G. Interfacial viscous coupling: a myth or reality? J Petrol Sci Eng, 1999, 23(1): 13
    [21] Kalaydjian F. Origin and quantification of coupling between relative permeabilities for two-phase flows in porous media. Transp Porous Media, 1990, 5(3): 215 doi: 10.1007/BF00140013
    [22] Andersen P ?, Qiao Y, Standnes D C, et al. Cocurrent spontaneous imbibition in porous media with the dynamics of viscous coupling and capillary backpressure. SPE J, 2018, 24(1): 158
    [23] Andersen P ?, Nesvik E K, Standnes, D C. Analytical solutions for forced and spontaneous imbibition accounting for viscous coupling. J Petrol Sci Eng, 2020, 186: 106717 doi: 10.1016/j.petrol.2019.106717
    [24] Qiao Y, Evje S. A compressible viscous three-phase model for porous media flow based on the theory of mixtures. Adv Water Resour, 2020, 141: 103599 doi: 10.1016/j.advwatres.2020.103599
    [25] Tian W B, Li A F, Ren X X, et al. The threshold pressure gradient effect in the tight sandstone gas reservoirs with high water saturation. Fuel, 2018, 226: 221 doi: 10.1016/j.fuel.2018.03.192
    [26] Standnes D C, Evje S, Andersen P ?. A novel relative permeability model based on mixture theory approach accounting for solid?fluid and fluid?fluid interactions. Transport Porous Med, 2017, 119: 707 doi: 10.1007/s11242-017-0907-z
    [27] Cochennec M, Davarzani H, Colombano S, et al. Influence of the fluid-fluid drag on the pressure drop in simulations of two-phase flows through porous flow cells. Int J Multiphas Flow, 2022, 149: 103987 doi: 10.1016/j.ijmultiphaseflow.2022.103987
  • 加載中
表(1)
計量
  • 文章訪問數:  407
  • HTML全文瀏覽量:  185
  • PDF下載量:  123
  • 被引次數: 0
出版歷程
  • 收稿日期:  2022-03-06
  • 網絡出版日期:  2022-06-22
  • 刊出日期:  2023-05-01

目錄

    /

    返回文章
    返回