<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

散體介質復雜力鏈網絡演化持續同調拓撲研究

王金安 楊柳 李飛

王金安, 楊柳, 李飛. 散體介質復雜力鏈網絡演化持續同調拓撲研究[J]. 工程科學學報, 2023, 45(5): 728-736. doi: 10.13374/j.issn2095-9389.2022.03.09.002
引用本文: 王金安, 楊柳, 李飛. 散體介質復雜力鏈網絡演化持續同調拓撲研究[J]. 工程科學學報, 2023, 45(5): 728-736. doi: 10.13374/j.issn2095-9389.2022.03.09.002
WANG Jin-an, YANG Liu, LI Fei. Topological study of persistent homology on complicated force chain network evolution in granular media[J]. Chinese Journal of Engineering, 2023, 45(5): 728-736. doi: 10.13374/j.issn2095-9389.2022.03.09.002
Citation: WANG Jin-an, YANG Liu, LI Fei. Topological study of persistent homology on complicated force chain network evolution in granular media[J]. Chinese Journal of Engineering, 2023, 45(5): 728-736. doi: 10.13374/j.issn2095-9389.2022.03.09.002

散體介質復雜力鏈網絡演化持續同調拓撲研究

doi: 10.13374/j.issn2095-9389.2022.03.09.002
基金項目: 國家自然科學基金資助項目(U1361208);國家重大研發計劃資助項目(2017YFC1503104)
詳細信息
    通訊作者:

    E-mail: lifei2016@ustb.edu.cn

  • 中圖分類號: TD-05

Topological study of persistent homology on complicated force chain network evolution in granular media

More Information
  • 摘要: 力鏈網絡是表征顆粒物質和散體介質細觀力學本質特征以及研究其宏觀結構力學行為的重要基礎。由于力鏈構型的復雜性和多重形態,使得力鏈網絡難以分析處理。拓撲數據分析(TDA)為定量描述力鏈網絡提供了一種簡單、有效且易處理的方法。基于拓撲數據分析中的持續同調理論,建立了散體顆粒從接觸網絡到力鏈網絡,再到拓撲空間模型的分析方法。以放頂煤開采為例,采用光彈實驗方法,追蹤放頂煤開采力鏈演化過程,對頂煤與覆巖力鏈網絡進行持續同調拓撲分析。研究表明:將采場中散體顆粒應力作為持續同調分析的閾值ε時,Betti數可以作為衡量采場來壓的一個量化指標,采場頂部覆巖和工作面前方煤巖力鏈網絡β0曲線呈拋物線形,且來壓時拋物線峰值高于初始狀態下的峰值。頂部覆巖β0峰值位于強力鏈范圍,而工作面前方煤巖β0峰值位于次強力鏈范圍。β1曲線呈L形,在[0.3, 1]區間內,β1趨近于0,在[0, 0.2]區間內與ε近似呈反比。持續同調拓撲研究為定量分析顆粒介質復雜力鏈網絡演化和宏觀力學行為提供了有效方法。

     

  • 圖  1  不同維度的單純形

    Figure  1.  Simplexes in different dimensions

    圖  2  力鏈網絡. (a) 顆粒體系;(b)閾值為1.4倍平均應力時的力鏈網絡;(c)閾值為0.5倍平均應力時的力鏈網絡;(d)閾值為0時的力鏈網絡

    Figure  2.  Force chain network: (a) particle system; (b) force chain network with the threshold value of 1.4 times the average stress; (c) force chain network with the threshold value of 0.5 times the average stress; (d) force chain network with the threshold value of 0

    圖  3  持續同調條碼圖. (a) β0; (b) β1

    Figure  3.  Persistent homology barcode: (a) β0; (b) β1

    圖  4  光彈實驗模型(單位:mm): 1—煤層; 2—基本頂; 3—上部覆巖

    Figure  4.  Photoelastic experiment model (unit: mm): 1—coal seam; 2—main roof; 3—overlying strata

    圖  5  放頂煤開采光彈力鏈網絡. (a)工況0(初始狀態);(b)工況3;(c)工況5;(d)工況8

    Figure  5.  Photoelastic images of force chains in top coal caving mining: (a) initial state; (b) mining step 3; (c) mining step 5; (d) mining step 8

    圖  6  不同工況下的力鏈平均強度

    Figure  6.  Average strength of force chains under different mining steps

    圖  7  頂部覆巖初始狀態下的β0條碼圖

    Figure  7.  β0 barcode of the initial state in the overburden

    圖  8  接觸網絡(初始狀態,ε=0)

    Figure  8.  Contact network (initial state, ε = 0)

    圖  9  上部覆巖初始狀態下的β1條碼圖

    Figure  9.  β1 barcode of the initial state in the overburden

    圖  10  頂部覆巖不同工況下的Betti數隨閾值ε變化曲線. (a) β0; (b) β1

    Figure  10.  Curves of Betti values vs ε under different mining steps in overburden: (a) β0; (b) β1

    圖  11  工作面前方煤巖不同工況下的Betti數隨閾值ε變化曲線. (a) β0; (b) β1

    Figure  11.  Curves of Betti values vs ε under different mining steps in front of working face: (a) β0; (b) β1.

    久色视频
  • [1] Sun Q C, Liu X X, Zhang G H, et al. The mesoscopic structures of dense granular materials. Adv Mech, 2017, 47(1): 263 doi: 10.6052/1000-0992-16-021

    孫其誠, 劉曉星, 張國華, 等. 密集顆粒物質的介觀結構. 力學進展, 2017, 47(1):263 doi: 10.6052/1000-0992-16-021
    [2] Chen F Z, Yan H. Constitutive model for solid-like, liquid-like, and gas-like phases of granular media and their numerical implementation. Powder Technol, 2021, 390: 369 doi: 10.1016/j.powtec.2021.05.023
    [3] Zhang J W, Wang J C, Wei W J, et al. Experimental investigation on the effect of size distribution on the flow characteristics of loose top coal. J China Coal Soc, 2019, 44(4): 985 doi: 10.13225/j.cnki.jccs.2018.1231

    張錦旺, 王家臣, 魏煒杰, 等. 塊度級配對散體頂煤流動特性影響的試驗研究. 煤炭學報, 2019, 44(4):985 doi: 10.13225/j.cnki.jccs.2018.1231
    [4] Xie G X, Fan H, Wang L. Evolution law and engineering application of surrounding rock force chain in shallow coal seam working face. J China Coal Soc, 2019, 44(10): 2945 doi: 10.13225/j.cnki.jccs.2019.0706

    謝廣祥, 范浩, 王磊. 淺埋煤層采場圍巖力鏈演化規律及工程應用. 煤炭學報, 2019, 44(10):2945 doi: 10.13225/j.cnki.jccs.2019.0706
    [5] Han L, Shu J S, Shang T, et al. Experiment study on the physical and mechanical parameters of soft rock remolding in waste dump. J Min Saf Eng, 2019, 36(4): 820 doi: 10.13545/j.cnki.jmse.2019.04.022

    韓流, 舒繼森, 尚濤, 等. 排土場散體軟巖重塑物理力學參數研究. 采礦與安全工程學報, 2019, 36(4):820 doi: 10.13545/j.cnki.jmse.2019.04.022
    [6] Wang J, Yang L, Li F, et al. Force chains in top coal caving mining. Int J Rock Mech Min Sci, 2020, 127: 104218 doi: 10.1016/j.ijrmms.2020.104218
    [7] Tordesillas A, Walker D M, Lin Q. Force cycles and force chains. Phys Rev E Stat Nonlinear Soft Matter Phys, 2010, 81(1): 011302 doi: 10.1103/PhysRevE.81.011302
    [8] Chen Q F, Liu E J, Qin S K. Quantitative study on evolution characteristics of force chain of granular materials in ore drawing from multiple funnels process. J Central South Univ (Sci Technol), 2021, 52(11): 4046

    陳慶發, 劉恩江, 秦世康. 多漏斗放礦過程中散體介質力鏈演化特征量化研究. 中南大學學報(自然科學版), 2021, 52(11):4046
    [9] Li L C, Marteau E, Andrade J E. Capturing the inter-particle force distribution in granular material using LS-DEM. Granul Matter, 2019, 21(3): 43 doi: 10.1007/s10035-019-0893-7
    [10] Majmudar T S, Behringer R P. Contact force measurements and stress-induced anisotropy in granular materials. Nature, 2005, 435(7045): 1079 doi: 10.1038/nature03805
    [11] Sun Q C, Cheng X H, Ji S Y, et al. Advances in the micro?macro mechanics of granular soil materials. Adv Mech, 2011, 41(3): 351

    孫其誠, 程曉輝, 季順迎, 等. 巖土類顆粒物質宏?細觀力學研究進展. 力學進展, 2011, 41(3):351
    [12] Behringer R P, Bi D, Chakraborty B, et al. Statistical properties of granular materials near jamming. J Stat Mech Theory Exp, 2014, 2014(6): P06004 doi: 10.1088/1742-5468/2014/06/P06004
    [13] Behringer R P, Daniels K E, Majmudar T S, et al. Fluctuations, correlations and transitions in granular materials: Statistical mechanics for a non-conventional system. Phil Trans R Soc A, 2008, 366(1865): 493 doi: 10.1098/rsta.2007.2106
    [14] Vallejo L E, Lobo-Guerrero S, Chik Z. A network of fractal force chains and their effect in granular materials under compression // Fractals in Engineering. London, 2005: 67
    [15] Wang J A, Han X G, Ren P Z. Identification of the damage state evolution in top coal caving mining. J China Coal Soc, 2016, 41(Suppl 1): 1

    王金安, 韓現剛, 任鵬召. 綜放開采頂煤介質狀態演化的特征識別. 煤炭學報, 2016, 41(Suppl 1):1
    [16] Wang J A, Han X G, Pang W D, et al. Photoelastic experimental study on the force chain structure and evolution in top coal and overlaying strata under fully mechanized top coal caving mining. Chin J Eng, 2017, 39(1): 13

    王金安, 韓現剛, 龐偉東, 等. 綜放開采頂煤與覆巖力鏈結構及演化光彈試驗研究. 工程科學學報, 2017, 39(1):13
    [17] Edelsbrunner H, Harer J. Persistent Homology-a Survey [J/OL]. ResearchGate (2008-01) [2022-03-09]. https://www.researchgate.net/\publication/228629885_Persistent_homology-a_survey
    [18] Cang Z X, Mu L, Wu K D, et al. A topological approach for protein classification. Comput Math Biophys, 2015, 3(1): 140
    [19] Carlsson G. Topology and Data. Bull Amer Math Soc, 2009, 46: 255 doi: 10.1090/S0273-0979-09-01249-X
    [20] Kramár M, Goullet A, Kondic L, et al. Quantifying force networks in particulate systems. Phys D Nonlinear Phenom, 2014, 283: 37 doi: 10.1016/j.physd.2014.05.009
    [21] Wang J A, Liang C, Pang W D. Photoelastic experiment on force chain evolution of particle aggregate under the conditions of biaxially loading and bilaterally flowing. Rock Soil Mech, 2016, 37(11): 3041 doi: 10.16285/j.rsm.2016.11.001

    王金安, 梁超, 龐偉東. 顆粒體雙軸加載雙向流動力鏈演化光彈試驗研究. 巖土力學, 2016, 37(11):3041 doi: 10.16285/j.rsm.2016.11.001
    [22] Wang J A, Pang W D, Liang C, et al. A Photoelastic Experimental Apparatus for Biaxial Loading and Bilateral Flowing of Particles: China Patent, CN204556449U. 2015-08-12

    王金安, 龐偉東, 梁超, 等. 一種雙向顆粒流動光彈實驗裝置: 中國專利, CN204556449U. 2015-08-12
    [23] Yang L, Li F, Wang J N, et al. Structures and evolution characteristics of force chains in top coal and overlying strata under fully mechanized caving mining. J China Coal Soc, 2018, 43(8): 2144 doi: 10.13225/j.cnki.jccs.2018.0443

    楊柳, 李飛, 王金安, 等. 綜放開采頂煤與覆巖力鏈結構及演化特征. 煤炭學報, 2018, 43(8):2144 doi: 10.13225/j.cnki.jccs.2018.0443
    [24] Li F, Yang L, Wang J A, et al. A quantitative extraction method of force chains for composite particles in a photoelastic experiment. Chin J Eng, 2018, 40(3): 302

    李飛, 楊柳, 王金安, 等. 混合顆粒體光彈力鏈定量提取方法. 工程科學學報, 2018, 40(3):302
    [25] Zhao Y Q, Zheng H, Wang D, et al. Particle scale force sensor based on intensity gradient method in granular photoelastic experiments. New J Phys, 2019, 21(2): 023009 doi: 10.1088/1367-2630/ab05e7
  • 加載中
圖(11)
計量
  • 文章訪問數:  467
  • HTML全文瀏覽量:  199
  • PDF下載量:  94
  • 被引次數: 0
出版歷程
  • 收稿日期:  2022-03-09
  • 網絡出版日期:  2022-05-25
  • 刊出日期:  2023-05-01

目錄

    /

    返回文章
    返回