-
摘要: 隨著半導體技術和電子技術的快速發展,高集成化和高性能化的微電子器件在航空航天、能源、醫療和汽車工業等領域發揮著越來越重要的作用。為了避免出現高熱流密度引起的器件高溫失效問題,對微電子器件進行有效熱管理是非常關鍵的。傳統的風冷和液冷技術不僅功耗高而且散熱效率低,嚴重影響了器件的穩定性和可靠性。近年來,國內外研究者提出了多種新型被動式和主動式強化換熱技術。其中,納米流體強化換熱技術由于成本低、操控靈活和形式多樣性的特點,受到了廣泛的關注。特別是對于二氧化硅納米顆粒,良好的機械和化學穩定性、豐富的結構形式和多樣化的合成方法等優勢引起了研究者極大的興趣。目前,二氧化硅納米流體在導熱、對流和輻射傳熱方面都有顯著的強化性能。以電子器件液冷技術為背景對二氧化硅納米流體在強化對流換熱的研究進展進行了系統綜述,首先介紹了二氧化硅納米流體的性質和制備方法,然后討論并總結了二氧化硅納米流體在單相對流(自然對流和強制對流)和相變對流(池沸騰和流動沸騰)領域的研究現狀,最后強調二氧化硅納米流體對流換熱技術存在的問題以及未來發展的方向,為建立高性能納米流體液冷換熱技術體系提供相應的思路和參考。Abstract: With the rapid development of semiconductor and electronics technologies, high-integration and high-performance microelectronic devices play more important roles in industrial fields, such as the aeronautics and astronautics, energy, medical, and automobile fields. To avoid thermal failure in high heat flux conditions, effective thermal management of microelectronic devices is critical. Conventional air and liquid cooling approaches suffer from not only high power consumption but also low heat dissipation efficiency, considerably limiting the stability and reliability of microelectronic devices. In recent years, researchers proposed many passive (such as nanofluids, surface roughness, and heating element structures) and active (such as the acoustic, electric, and magnetic fields) heat transfer enhancement approaches. Because of its low cost, flexible control, and diverse forms, the nanofluid approach has attracted considerable attention. To solve the low thermal conductivity issue of conventional working fluids (such as water, ethylene glycol, and mineral oil), researchers have developed a series of particulate forms, including but not limited to silica dioxide (SiO2), aluminum oxide (Al2O3), titanium dioxide (TiO2), carbon nanotube, copper (Cu), silver (Ag), silicon carbide (SiC), diamond, iron oxide (Fe2O3), zinc oxide (ZnO), magnesium oxide (MgO), and cupric oxide (CuO). Particularly, silica (SiO2) nanofluids, with their good mechanical and chemical stability, abundant structures, and diverse preparation methods, make them interesting to researchers. To date, SiO2 nanofluids exhibit outstanding intensification performance in the fields of conduction, convection, and radiation heat transfer. This study provided a systematic overview of the research progress on SiO2 nanofluids for convective heat transfer applications. First, the physicochemical properties and preparation methods (i.e., one-step and two-step methods) of SiO2 nanofluids were introduced. Further, the state of the art of SiO2 nanofluids for single-phase convection and phase change convection applications was summarized, and the numerical simulation and experimental observation results of natural convection, forced convection, pool boiling, and flow boiling were tabulated and discussed in detail. Finally, the current remaining challenges and future research directions were highlighted in terms of the in-depth heat transfer enhancement principles, practical industrialization applications, systematic and accurate evaluation of heat transfer performance, preparation and characterization strategies, exploration of a high-diversity library of particulate structures, and optimization of heat exchanger apparatus. We believe that this review article can shed new insights into the rational design and preparation of advanced SiO2 nanofluids and provide important guidelines to develop robust nanofluid-based liquid cooling heat sinks.
-
Key words:
- silica /
- nanofluid /
- natural convection /
- forced convection /
- pool boiling /
- flow boiling
-
圖 2 二氧化硅納米流體自然對流強化換熱研究體系. (a) 分散至乙二醇和丙三醇工質的二氧化硅納米流體強化換熱體系[48];(b) 二氧化硅納米流體在方形和三角形封閉區域內的自然對流模型[47];(c) 分散至正十八烷工質中的介孔二氧化硅納米流體強化換熱體系[52]
Figure 2. Silica nanofluid-based natural convective heat transfer enhancement platforms: (a) SiO2 nanoparticles dispersed in ethylene glycol and glycerol for heat transfer enhancement[48]; (b) natural convection of SiO2 nanofluids in square and triangular enclosures[47]; (c) heat transfer of nano-enhanced n-octadecane-mesoporous SiO2[52]
?—particle volume concentration; Tc—cooling surface temperature; Th—heating surface temperature; g—gravitational acceleration; r—cylinder radius; ro—outer cylinder radius; ri—inner cylinder radius; H—cylinder height
圖 3 二氧化硅納米流體強制對流強化換熱研究體系. (a) 二氧化硅納米流體在波紋槽道中的對流換熱應用裝置[57];(b) 二氧化硅納米冷卻劑在鋁管散熱器中的對流換熱實驗裝置[61];(c) 介孔二氧化硅與Cu復合納米流體在螺旋槽管中的對流換熱實驗裝置[62]
Figure 3. Silica nanofluid-based force convective heat transfer enhancement platforms: (a) experimental setup of SiO2 nanofluids for convective heat transfer applications in corrugated channels[57]; (b) experimental setup of SiO2 nanocoolant for convective heat transfer in aluminum tube radiator[61]; (c) experimental setup of mesoporous SiO2 and Cu composite nanofluids for convective heat transfer in helically grooved tube[62]
圖 4 二氧化硅納米流體池沸騰強化換熱研究體系. (a) 不同尺寸二氧化硅納米顆粒的池沸騰臨界熱流密度性質[65];(b) 納米級二氧化硅的尺寸對沸騰換熱的影響機制[71];(c) 微米級二氧化硅的尺寸對沸騰換熱的影響機制[72];(d) 表面活性劑對池沸騰換熱系數的影響[70];(e) 二氧化硅納米顆粒薄膜包覆強化核態沸騰換熱[83]
Figure 4. Silica nanofluid-based pool boiling heat transfer enhancement platforms: (a) pool boiling critical heat flux properties of SiO2 nanoparticles with different sizes[65]; (b) size effect of nanoscale SiO2 particles on pool boiling[71]; (c) size effect of submicroscale and microscale SiO2 particles on pool boiling[72]; (d) effect of various surfactants on the pool boiling heat transfer coefficient of SiO2 nanofluids[70]; (e) augmentation of nucleate boiling heat transfer using nanoparticle thin-film coating[83]
圖 5 二氧化硅納米流體流動沸騰強化換熱研究體系. (a) 分散至R-134a中二氧化硅納米流體在水平管中的流動沸騰換熱裝置[75];(b) 分散至水中二氧化硅納米流體在脈沖熱管中的流動沸騰換熱裝置[79]
Figure 5. Silica nanofluid-based flow boiling heat transfer enhancement platforms: (a) flow boiling heat transfer setup of R-134a-based SiO2 nanofluids in a horizontal tube[75]; (b) flow boiling heat transfer setup of water-based SiO2 nanofluids in a pulsating heat pipe[79]
表 1 二氧化硅納米流體對流換熱應用研究總結
Table 1. A summary of examples of silica nanofluids for convective heat transfer applications
Heat transfer type Silica nanoparticles Solvent (NPs ratio) Stabilization method Experimental setup Performance enhancement Reference Size Shape Pore Source Natural convection 20 nm Sphere None IoLiTec? Distilled water (4%–20%) Surfactant Transient hot wire 9.4% (TC) [46] 7 nm Sphere None Water (0.5%–2%) Ultrasonic Transient hot wire 4.5% (TC) [47] 15–20 nm Sphere None US Research Nanomaterials Inc. Glycerol; EG (0.5%–2%) pH adjustment Transient hot wire 6.1%–11.5% (TC) [48] 20–30 nm Sphere None Water-EG (0.5%–5%) Ultrasonic Transient hot wire 45.5% (TC) [49] <100 nm Irregular None EG (0.005%–5%) Ultrasonic Transient hot wire 28.34% (TC) [50] Sphere Mesopore Modeling Octadecane (1%–5%) Modeling 4.47% (TC) [51] Sphere Mesopore Modeling Octadecane (1%–5%) Modeling 4.6% (TC) [52] 21–45 nm None Modeling Water; glycerol; EG (0.1%–3%) Modeling [53] None Modeling Water-EG-Al2O3 Modeling 18% (TC) [54] Forced convection 18 nm Sphere None Wacker? Distilled water (3.5%–5%) Ultrasonic Al minichannel 3%–15% (HTC) [55] 20 nm Sphere None PlasmaChem? Deionized water (0.05%–2.5%) Magnetic stirring; ultrasonic Copper tube ?20% (HTC) [56] 20 nm Sphere None Novascientific? Distilled water (1%–2%) Ultrasonic Corrugated channels 63.59% (HTC) [57] 20 nm Sphere None Novascientific? Distilled water (1%–2%) Magnetic stirring; ultrasonic Corrugated channels 3.1 (Nusselt number ratio) [58] <25 nm Sphere None Sigma-Aldrich? Deionized water (0.01%–0.02%) Ultrasonic; SDBS rectangular channel ?11.9% (HTC) [59] 10–100 nm Sphere None Sol-gel EG-Al2O3 (0.05%–0.2%) pH adjustment; ultrasonic Al tube radiator 52.8% (HTC) [60] 20 nm Sphere None NanoAmor? Water (0.04%–0.12%) CTAB; magnetic stirring; ultrasonic Al tube radiator 36.92% (HTC) [61] 1–2 μm Irregular <5 nm Hydrothermal (with Cu) Deionized water (0.012%–0.023%) Magnetic stirring; ultrasonic Helically grooved tube 33.45% (HTC) [62] 20.83 nm Sphere None Sonication Water-CuO (0.05%–0.2%) Ultrasonic Al tube radiator 48.6% (HTC) [63] Pool boiling 15 nm; 50 nm; 3 μm Sphere None Cornell University Deionized water (0.5%) NiCr wire 300% (CHF) [64] 10 nm; 20 nm Sphere None Alfa Aesar? Deionized water (0.5%) Magnetic stirring; pH adjustment NiCr wire 10%–15% (CHF) [65] 20–40 nm Sphere None Sigma-Aldrich? Deionized water (0.001%–0.1%) pH adjustment Stainless steel wire [66] 20–40 nm Sphere None Sigma-Aldrich? Deionized water (0.001%–0.1%) pH adjustment Stainless steel wire 80% (CHF) [67] 10 nm; 20 nm Sphere None Alfa Aesar? Deionized water (0.5%) pH adjustment NiCr wire 50% (CHF) [68] 7–14 nm Sphere None Plasma Chem? Deionized water (0.005%–0.01%) Ultrasonic; magnetic stirring Cartridge heater 52% (CHF) [69] <50 nm Sphere None Sigma-Aldrich? Deionized water (0.01%–1%) SDS; CTAB; PS20 Copper block <80% (HTC) [70] 11 nm; 50 nm; 70 nm Sphere None Sigma-Aldrich? Deionized water (0.01%–1%) Magnetic stirring; ultrasonic Copper block <7% (HTC) [71] Porous (0.5–2 μm); amorphous (0.4–3 μm) Sphere 2 nm; 4 nm Sigma-Aldrich? Deionized water (0.1%–10%) Ultrasonic Plate heater 200% (CHF) [72] 10–20 nm Sphere None Nano Research Lab? Distilled water (0.01%–0.05%) NiCr wire 38.5% (CHF) [73] 15 nm Sphere None Sisco Research
Lab?Deionized water (0.0001%–0.1%) Ultrasonic Flat stainless steel 133% (CHF) [74] Flow boiling 200–300 nm Irregular None R-134a (0.05%–0.5%) None Horizontal tube ?55% (HTC) [75] 30 nm Sphere None Deionized water; water (0.5%–2%) Ultrasonic Gravity heat pipe 1.63%–9.6% (HTC) [76] 15–20 nm; 50 nm Sphere None Ethanol (0.5%–2%) Ultrasonic Gravity heat pipe 42.1%–55% (HTC) [77] 80 nm Sphere None Fraunhofer IKTS Distilled water (2%) pH adjustment Thermosyphon [78] 30 nm Sphere None Deionized water (0.5%–2%) Magnetic stirring; SDS; pH adjustment; ultrasonic Pulsating heat pipe 40.1% (HTC) [79] Note: CHF—critical heat flux; CTAB—cetyltrimethylammonium bromide; EG—ethylene glycol; HTC—heat transfer coefficient; NPs—nanoparticles; PS20—polysorbate 20; SDBS—sodium dodecylbenzene sulfonate; SDS—sodium dodecyl sulfate; TC—thermal conductivity -
參考文獻
[1] Wei J J, Liu B, Zhang Y H. Progress in enhanced boiling heat transfer over microstructured surfaces under normal/microgravity. Chem Ind Eng Prog, 2019, 38(1): 14魏進家, 劉斌, 張永海. 常/微重力下微結構表面強化沸騰換熱研究進展. 化工進展, 2019, 38(1):14 [2] Wei J J, Zhang Y H. Review of enhanced boiling heat transfer over micro-pin-finned surfaces. CIESC J, 2016, 67(1): 97魏進家, 張永海. 柱狀微結構表面強化沸騰換熱研究綜述. 化工學報, 2016, 67(1):97 [3] Singh S K, Sharma D. Review of pool and flow boiling heat transfer enhancement through surface modification. Int J Heat Mass Transf, 2021, 181: 122020 doi: 10.1016/j.ijheatmasstransfer.2021.122020 [4] Sidik N A C, Muhamad M N A W, Japar W M A A, et al. An overview of passive techniques for heat transfer augmentation in microchannel heat sink. Int Commun Heat Mass Transf, 2017, 88: 74 doi: 10.1016/j.icheatmasstransfer.2017.08.009 [5] Ahn H S, Kim M H. A review on critical heat flux enhancement with nanofluids and surface modification. J Heat Transf, 2012, 134: (2): 024001 [6] Bahiraei M, Heshmatian S. Electronics cooling with nanofluids: A critical review. Energy Convers Manag, 2018, 172: 438 doi: 10.1016/j.enconman.2018.07.047 [7] Deng D X, Zeng L, Sun W. A review on flow boiling enhancement and fabrication of enhanced microchannels of microchannel heat sinks. Int J Heat Mass Transf, 2021, 175: 121332 doi: 10.1016/j.ijheatmasstransfer.2021.121332 [8] Chen Z Z, Pei Z C, Zhao X, et al. Acoustic microreactors for chemical engineering. Chem Eng J, 2022, 433: 133258 doi: 10.1016/j.cej.2021.133258 [9] Dey D, Sahu D S. Nanofluid in the multiphase flow field and heat transfer: A review. Heat Transf, 2021, 50(4): 3722 doi: 10.1002/htj.22050 [10] Guo Z X. A review on heat transfer enhancement with nanofluids. J Enh Heat Transf, 2020, 27(1): 1 doi: 10.1615/JEnhHeatTransf.2019031575 [11] Sajid M U, Ali H M. Recent advances in application of nanofluids in heat transfer devices: A critical review. Renew Sustain Energy Rev, 2019, 103: 556 doi: 10.1016/j.rser.2018.12.057 [12] Terekhov V I, Kalinina S V, Lemanov V V. The mechanism of heat transfer in nanofluids: State of the art (review). Part 1. Synthesis and properties of nanofluids. Thermophys Aeromech, 2010, 17(1): 1 [13] Terekhov V I, Kalinina S V, Lemanov V V. The mechanism of heat transfer in nanofluids: State of the art (review). Part 2. Convective heat transfer. Thermophys Aeromech, 2010, 17(2): 157 [14] Ganvir R B, Walke P V, Kriplani V M. Heat transfer characteristics in nanofluid—A review. Renew Sustain Energy Rev, 2017, 75: 451 doi: 10.1016/j.rser.2016.11.010 [15] Wen D S, Lin G P, Vafaei S, et al. Review of nanofluids for heat transfer applications. Particuology, 2009, 7(2): 141 doi: 10.1016/j.partic.2009.01.007 [16] Choi S U S, Eastman J A. Enhancing thermal conductivity of fluids with nanoparticles [J/OL]. U. S. Department of Energy Office of Scientific and Technical Information Online (1995-10-01) [2022-02-10].https://www.osti.gov/servlets/purl/196525 [17] Lin J, Fang L G. Recent progress of technology and application of heat transfer enhancement of nanofuilds. Chem Ind Eng Prog, 2008, 27(4): 488 doi: 10.3321/j.issn:1000-6613.2008.04.004林璟, 方利國. 納米流體強化傳熱技術及其應用新進展. 化工進展, 2008, 27(4):488 doi: 10.3321/j.issn:1000-6613.2008.04.004 [18] Zahmatkesh I, Sheremet M, Yang L, et al. Effect of nanoparticle shape on the performance of thermal systems utilizing nanofluids: A critical review. J Mol Liq, 2021, 321: 114430 doi: 10.1016/j.molliq.2020.114430 [19] Menni Y, Chamkha A J, Ameur H. Advances of nanofluids in heat exchangers—A review. Heat Transf, 2020, 49(8): 4321 doi: 10.1002/htj.21829 [20] Chandrasekar M, Suresh S. A review on the mechanisms of heat transport in nanofluids. Heat Transf Eng, 2009, 30(14): 1136 doi: 10.1080/01457630902972744 [21] Godson L, Raja B, Mohan Lal D, et al. Enhancement of heat transfer using nanofluids—An overview. Renew Sustain Energy Rev, 2010, 14(2): 629 doi: 10.1016/j.rser.2009.10.004 [22] Sarkar J. A critical review on convective heat transfer correlations of nanofluids. Renew Sustain Energy Rev, 2011, 15(6): 3271 doi: 10.1016/j.rser.2011.04.025 [23] Mohammed H A, Bhaskaran G, Shuaib N H, et al. Heat transfer and fluid flow characteristics in microchannels heat exchanger using nanofluids: A review. Renew Sustain Energy Rev, 2011, 15(3): 1502 doi: 10.1016/j.rser.2010.11.031 [24] Pinto R V, Fiorelli F A S. Review of the mechanisms responsible for heat transfer enhancement using nanofluids. Appl Therm Eng, 2016, 108: 720 doi: 10.1016/j.applthermaleng.2016.07.147 [25] Vanaki S M, Ganesan P, Mohammed H A. Numerical study of convective heat transfer of nanofluids: A review. Renew Sustain Energy Rev, 2016, 54: 1212 doi: 10.1016/j.rser.2015.10.042 [26] Sidik N A C, Mamat R. Recent progress on lattice Boltzmann simulation of nanofluids: A review. Int Commun Heat Mass Transf, 2015, 66: 11 doi: 10.1016/j.icheatmasstransfer.2015.05.010 [27] Fang X D, Wang R, Chen W W, et al. A review of flow boiling heat transfer of nanofluids. Appl Therm Eng, 2015, 91: 1003 doi: 10.1016/j.applthermaleng.2015.08.100 [28] Ciloglu D, Bolukbasi A. A comprehensive review on pool boiling of nanofluids. Appl Therm Eng, 2015, 84: 45 doi: 10.1016/j.applthermaleng.2015.03.063 [29] Murshed S M S, Nieto de Castro C A, Louren?o M J V, et al. A review of boiling and convective heat transfer with nanofluids. Renew Sustain Energy Rev, 2011, 15(5): 2342 doi: 10.1016/j.rser.2011.02.016 [30] Liang G T, Mudawar I. Review of single-phase and two-phase nanofluid heat transfer in macro-channels and micro-channels. Int J Heat Mass Transf, 2019, 136: 324 doi: 10.1016/j.ijheatmasstransfer.2019.02.086 [31] Kamel M, Lezsovits F. Boiling heat transfer of nanofluids: A review of recent studies. Therm Sci, 2019, 23(1): 109 doi: 10.2298/TSCI170419216K [32] Khan A, Ali H. A comprehensive review on pool boiling heat transfer using nanofluids. Therm Sci, 2019, 23(5B): 3209 [33] He Y L, Xie T. A review of heat transfer models of nanoporous silica aerogel insulation material. Chin Sci Bull, 2015, 60(2): 137 doi: 10.1360/N972014-00948何雅玲, 謝濤. 氣凝膠納米多孔材料傳熱計算模型研究進展. 科學通報, 2015, 60(2):137 doi: 10.1360/N972014-00948 [34] Peng C H, Yang M, Luan Y, et al. Preparation and properties of a mesoporous SBA-15/silica composited aerogel. Chin J Eng, 2016, 38(2): 270彭超豪, 楊穆, 欒奕, 等. 介孔SBA-15/SiO2氣凝膠硅—硅復合材料的制備和性能. 工程科學學報, 2016, 38(2):270 [35] Hao N, Li L, Tang F. Roles of particle size, shape and surface chemistry of mesoporous silica nanomaterials on biological systems. Int Mater Rev, 2017, 62(2): 57 doi: 10.1080/09506608.2016.1190118 [36] Hao N J, Nie Y, Zhang J X J. Microfluidic synthesis of functional inorganic micro-/nanoparticles and applications in biomedical engineering. Int Mater Rev, 2018, 63(8): 461 doi: 10.1080/09506608.2018.1434452 [37] Hao N J, Nie Y, Zhang J X J. Microfluidics for silica biomaterials synthesis: Opportunities and challenges. Biomater Sci, 2019, 7(6): 2218 doi: 10.1039/C9BM00238C [38] Chen Z Z, Liu P Z, Zhao X, et al. Sharp-edge acoustic microfluidics: Principles, structures, and applications. Appl Mater Today, 2021, 25: 101239 doi: 10.1016/j.apmt.2021.101239 [39] Chen Z Z, Shen L, Zhao X, et al. Acoustofluidic micromixers: From rational design to lab-on-a-chip applications. Appl Mater Today, 2022, 26: 101356 doi: 10.1016/j.apmt.2021.101356 [40] Ali H, Babar H, Shah T, et al. Preparation techniques of TiO2 nanofluids and challenges: A review. Appl Sci, 2018, 8(4): 587 doi: 10.3390/app8040587 [41] Zainon S N M, Azmi W H. Recent progress on stability and thermo-physical properties of mono and hybrid towards green nanofluids. Micromachines, 2021, 12(2): 176 doi: 10.3390/mi12020176 [42] Li J, Feng Y H, Zhang X X, et al. Near-field radiation across a spherical pore in mesoporous silica. Chin J Eng, 2015, 37(8): 1063李靜, 馮妍卉, 張欣欣, 等. 介孔二氧化硅球形孔內近場輻射換熱. 工程科學學報, 2015, 37(8):1063 [43] Sidik N A C, Mohammed H A, Alawi O A, et al. A review on preparation methods and challenges of nanofluids. Int Commun Heat Mass Transf, 2014, 54: 115 doi: 10.1016/j.icheatmasstransfer.2014.03.002 [44] Wu J M, Zhao J Y. A review of nanofluid heat transfer and critical heat flux enhancement—Research gap to engineering application. Prog Nucl Energy, 2013, 66: 13 doi: 10.1016/j.pnucene.2013.03.009 [45] Saidur R, Leong K Y, Mohammed H A. A review on applications and challenges of nanofluids. Renew Sustain Energy Rev, 2011, 15(3): 1646 doi: 10.1016/j.rser.2010.11.035 [46] Haddad Z, Abid C, Mohamad A A, et al. Natural convection of silica–water nanofluids based on experimental measured thermophysical properties: Critical analysis. Heat Mass Transf, 2016, 52(8): 1649 doi: 10.1007/s00231-015-1682-4 [47] Mahian O, Kianifar A, Heris S Z, et al. Natural convection of silica nanofluids in square and triangular enclosures: Theoretical and experimental study. Int J Heat Mass Transf, 2016, 99: 792 doi: 10.1016/j.ijheatmasstransfer.2016.03.045 [48] Akilu S, Baheta A T, Minea A A, et al. Rheology and thermal conductivity of non-porous silica (SiO2) in viscous glycerol and ethylene glycol based nanofluids. Int Commun Heat Mass Transf, 2017, 88: 245 doi: 10.1016/j.icheatmasstransfer.2017.08.001 [49] Esfahani M A, Toghraie D. Experimental investigation for developing a new model for the thermal conductivity of Silica/Water-Ethylene glycol (40%-60%) nanofluid at different temperatures and solid volume fractions. J Mol Liq, 2017, 232: 105 doi: 10.1016/j.molliq.2017.02.037 [50] Li Z, Kalbasi R, Nguyen Q, et al. Effects of sonication duration and nanoparticles concentration on thermal conductivity of silica-ethylene glycol nanofluid under different temperatures: An experimental study. Powder Technol, 2020, 367: 464 doi: 10.1016/j.powtec.2020.03.058 [51] Ghalambaz M, Mehryan S A M, Tahmasebi A, et al. Non-Newtonian phase-change heat transfer of nano-enhanced octadecane with mesoporous silica particles in a tilted enclosure using a deformed mesh technique. Appl Math Model, 2020, 85: 318 doi: 10.1016/j.apm.2020.03.046 [52] Mehryan S A M, Vaezi M, Sheremet M, et al. Melting heat transfer of power-law non-Newtonian phase change nano-enhanced n-octadecane-mesoporous silica (MPSiO2). Int J Heat Mass Transf, 2020, 151: 119385 doi: 10.1016/j.ijheatmasstransfer.2020.119385 [53] Maleki A, Haghighi A, Irandoost Shahrestani M, et al. Applying different types of artificial neural network for modeling thermal conductivity of nanofluids containing silica particles. J Therm Anal Calorim, 2021, 144(4): 1613 doi: 10.1007/s10973-020-09541-x [54] Preeti, Ojjela O. Numerical investigation of heat transport in Alumina-Silica hybrid nanofluid flow with modeling and simulation. Math Comput Simul, 2022, 193: 100 doi: 10.1016/j.matcom.2021.09.022 [55] Fazeli S A, Hashemi S M H, Zirakzadeh H, et al. Experimental and numerical investigation of heat transfer in a miniature heat sink utilizing silica nanofluid. Superlattices Microstruct, 2012, 51(2): 247 doi: 10.1016/j.spmi.2011.11.017 [56] Ahmad A, Mansour K, Masoud D. An experimental comparison of water based alumina and silica nanofluids heat transfer in laminar flow regime. J Central South Univ, 2013, 20(12): 3582 doi: 10.1007/s11771-013-1884-1 [57] Ajeel R K, Salim W S I, Hasnan K. An experimental investigation of thermal-hydraulic performance of silica nanofluid in corrugated channels. Adv Powder Technol, 2019, 30(10): 2262 doi: 10.1016/j.apt.2019.07.006 [58] Ajeel R K, Salim W S I, Sopian K, et al. Turbulent convective heat transfer of silica oxide nanofluid through corrugated channels: An experimental and numerical study. Int J Heat Mass Transf, 2019, 145: 118806 doi: 10.1016/j.ijheatmasstransfer.2019.118806 [59] Mohan M N, Thomas S, Sobhan C B. Convective heat transfer studies in dilute alumina and silica nanofluids flowing through a channel using Mach-Zehnder interferometry. Heat Mass Transf, 2020, 56(6): 1793 doi: 10.1007/s00231-019-02792-x [60] Nagarajan F C, Kannaiyan S, Boobalan C. Intensification of heat transfer rate using alumina-silica nanocoolant. Int J Heat Mass Transf, 2020, 149: 119127 doi: 10.1016/j.ijheatmasstransfer.2019.119127 [61] Shah T R, Ali H M, Janjua M M. On aqua-based silica (SiO2–water) nanocoolant: Convective thermal potential and experimental precision evaluation in aluminum tube radiator. Nanomaterials, 2020, 10(9): 1736 doi: 10.3390/nano10091736 [62] Pourrajab R, Noghrehabadi A, Behbahani M. Thermo-hydraulic performance of mesoporous silica with Cu nanoparticles in helically grooved tube. Appl Therm Eng, 2021, 185: 116436 doi: 10.1016/j.applthermaleng.2020.116436 [63] Nagarajan F C, Kannaiyan S K, Boobalan C. A proficient approach to enhance heat transfer using cupric oxide/silica hybrid nanoliquids. J Therm Anal Calorim, 2021: 1 [64] Vassallo P, Kumar R, D’Amico S. Pool boiling heat transfer experiments in silica-water nano-fluids. Int J Heat Mass Transf, 2004, 47(2): 407 doi: 10.1016/S0017-9310(03)00361-2 [65] Milanova D, Kumar R. Role of ions in pool boiling heat transfer of pure and silica nanofluids. Appl Phys Lett, 2005, 87(23): 233107 doi: 10.1063/1.2138805 [66] Kim S J, Bang I C, Buongiorno J, et al. Effects of nanoparticle deposition on surface wettability influencing boiling heat transfer in nanofluids. Appl Phys Lett, 2006, 89(15): 153107 doi: 10.1063/1.2360892 [67] Kim S J, Bang I C, Buongiorno J, et al. Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux. Int J Heat Mass Transf, 2007, 50(19-20): 4105 doi: 10.1016/j.ijheatmasstransfer.2007.02.002 [68] Milanova D, Kumar R. Heat transfer behavior of silica nanoparticles in pool boiling experiment. J Heat Transf, 2008, 130(4): 042401 doi: 10.1115/1.2787020 [69] Rostamian F, Etesami N. Pool boiling characteristics of silica/water nanofluid and variation of heater surface roughness in domain of time. Int Commun Heat Mass Transf, 2018, 95: 98 doi: 10.1016/j.icheatmasstransfer.2018.04.003 [70] Tian Z, Etedali S, Afrand M, et al. Experimental study of the effect of various surfactants on surface sediment and pool boiling heat transfer coefficient of silica/DI water nano-fluid. Powder Technol, 2019, 356: 391 doi: 10.1016/j.powtec.2019.08.049 [71] Norouzipour A, Abdollahi A, Afrand M. Experimental study of the optimum size of silica nanoparticles on the pool boiling heat transfer coefficient of silicon oxide/deionized water nanofluid. Powder Technol, 2019, 345: 728 doi: 10.1016/j.powtec.2019.01.034 [72] Lee M S, Kam D H, Jeong Y H. An experimental observation of the effects of submicron- and micron-sized mesoporous silica particles on the critical heat flux. Int J Heat Mass Transf, 2020, 160: 120182 doi: 10.1016/j.ijheatmasstransfer.2020.120182 [73] Zafar S, Adil M, Azhar M, et al. Experimental and numerical study of Pool boiling and critical heat flux enhancement using water based silica Nanofluids. Heat Mass Transf, 2021, 57(10): 1593 doi: 10.1007/s00231-021-03047-4 [74] Mukherjee S, Ali N, Aljuwayhel N F, et al. Pool boiling amelioration by aqueous dispersion of silica nanoparticles. Nanomaterials, 2021, 11(8): 2138 doi: 10.3390/nano11082138 [75] Henderson K, Park Y G, Liu L, et al. Flow-boiling heat transfer of R-134a-based nanofluids in a horizontal tube. Int J Heat Mass Transf, 2010, 53(5-6): 944 doi: 10.1016/j.ijheatmasstransfer.2009.11.026 [76] Lu X, Yang J. Heat transfer characteristics of SiO2-DW nanofluid gravity heat pipe. Mod Chem Ind, 2015, 35(11): 145陸鑫, 楊峻. SiO2-DW納米流體重力熱管傳熱性能試驗研究. 現代化工, 2015, 35(11):145 [77] Yang W B, Yang J. Experimental research on heat transfer performance of SiO2-ethanol nanofluid gravity heat pipe. Contemp Chem Ind, 2019, 48(12): 2962楊文斌, 楊峻. SiO2-乙醇納米流體重力熱管傳熱性能的試驗研究. 當代化工, 2019, 48(12):2962 [78] Kujawska A, Mulka R, Hamze S, et al. The effect of boiling in a thermosyphon on surface tension and contact angle of silica and graphene oxide nanofluids. Colloids Surf A Physicochem Eng Aspects, 2021, 627: 127082 doi: 10.1016/j.colsurfa.2021.127082 [79] Zhang D W, He Z T, Guan J, et al. Heat transfer and flow visualization of pulsating heat pipe with silica nanofluid: An experimental study. Int J Heat Mass Transf, 2022, 183: 122100 doi: 10.1016/j.ijheatmasstransfer.2021.122100 [80] Li Y Q, Liang K Y, Wang J J, et al. Research progress of mesoporous silica-based composite phase change materials. Chin J Eng, 2020, 42(10): 1229李亞瓊, 梁凱彥, 王靜靜, 等. 介孔二氧化硅基復合相變材料研究進展. 工程科學學報, 2020, 42(10):1229 [81] Zhong L M, Yang M, Luan Y, et al. Preparation and properties of paraffin/SiO2 composite phase change materials. Chin J Eng, 2015, 37(7): 936鐘麗敏, 楊穆, 欒奕, 等. 石蠟/二氧化硅復合相變材料的制備及其性能. 工程科學學報, 2015, 37(7):936 [82] Salehi H, Hormozi F. Numerical study of silica-water based nanofluid nucleate pool boiling by two-phase Eulerian scheme. Heat Mass Transf, 2018, 54(3): 773 doi: 10.1007/s00231-017-2146-9 [83] Forrest E, Williamson E, Buongiorno J, et al. Augmentation of nucleate boiling heat transfer and critical heat flux using nanoparticle thin-film coatings. Int J Heat Mass Transf, 2010, 53(1-3): 58 doi: 10.1016/j.ijheatmasstransfer.2009.10.008 [84] Zupan?i? M, Steinbücher M, Gregor?i? P, et al. Enhanced pool-boiling heat transfer on laser-made hydrophobic/superhydrophilic polydimethylsiloxane-silica patterned surfaces. Appl Therm Eng, 2015, 91: 288 doi: 10.1016/j.applthermaleng.2015.08.026 -