<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

三軸應力下顆粒流失對斷層破碎帶凝灰巖滲流特征的影響

黃昌富 張帥龍 高永濤 吳順川 周喻 孫浩 王文強 盧慶釗

黃昌富, 張帥龍, 高永濤, 吳順川, 周喻, 孫浩, 王文強, 盧慶釗. 三軸應力下顆粒流失對斷層破碎帶凝灰巖滲流特征的影響[J]. 工程科學學報, 2022, 44(7): 1134-1146. doi: 10.13374/j.issn2095-9389.2021.11.22.001
引用本文: 黃昌富, 張帥龍, 高永濤, 吳順川, 周喻, 孫浩, 王文強, 盧慶釗. 三軸應力下顆粒流失對斷層破碎帶凝灰巖滲流特征的影響[J]. 工程科學學報, 2022, 44(7): 1134-1146. doi: 10.13374/j.issn2095-9389.2021.11.22.001
HUANG Chang-fu, ZHANG Shuai-long, GAO Yong-tao, WU Shun-chuan, ZHOU Yu, SUN Hao, WANG Wen-qiang, LU Qing-zhao. Influence of particle loss on the seepage characteristics of tuff in the fault fracture zone under triaxial stress[J]. Chinese Journal of Engineering, 2022, 44(7): 1134-1146. doi: 10.13374/j.issn2095-9389.2021.11.22.001
Citation: HUANG Chang-fu, ZHANG Shuai-long, GAO Yong-tao, WU Shun-chuan, ZHOU Yu, SUN Hao, WANG Wen-qiang, LU Qing-zhao. Influence of particle loss on the seepage characteristics of tuff in the fault fracture zone under triaxial stress[J]. Chinese Journal of Engineering, 2022, 44(7): 1134-1146. doi: 10.13374/j.issn2095-9389.2021.11.22.001

三軸應力下顆粒流失對斷層破碎帶凝灰巖滲流特征的影響

doi: 10.13374/j.issn2095-9389.2021.11.22.001
基金項目: 國家自然科學基金資助項目(52004017);中央高校基本科研業務費專項資金項目(FRF-IDRY-20-024)
詳細信息
    通訊作者:

    E-mail: zsl18810915311@163.com

  • 中圖分類號: TG142.71

Influence of particle loss on the seepage characteristics of tuff in the fault fracture zone under triaxial stress

More Information
  • 摘要: 地下工程施工過程中,處于三向應力狀態的斷層破碎帶凝灰巖在流固耦合作用下發生顆粒流失,繼而誘發斷層帶破碎巖石結構失穩,最終導致斷層突水災害發生。基于此,開展現場斷層取樣,利用破碎巖石三軸滲透試驗系統,研究三軸荷載下不同粒徑級配試樣顆粒流失規律,進而分析顆粒流失對孔隙結構與滲流流速時變演化規律的影響。研究結果表明:(1)不同三軸應力下,破碎凝灰巖顆粒流失質量與時間滿足指數型函數關系,兩者間相關系數不低于94%。顆粒流失質量與軸壓和圍壓成反比,且軸向位移越大,顆粒流失質量隨圍壓減小的幅度越小;(2)滲透過程中0~60 s間的孔隙率增長較快,孔隙結構的滲流演變過程與粒徑級配有關,隨著n (Talbot冪指數) 值的增大,孔隙率整體增大,n值相同時,孔隙率隨軸向位移與圍壓的增大而減小,且孔隙率量級為0.33~0.52;(3)由于試樣內部顆粒規律性流失,破碎凝灰巖滲流流速時變演化過程可劃分為“平穩滲流、滲流流速突增和近似管流”三個階段,圍壓為0.8 MPa時各階段流速整體大于圍壓為1.4 MPa時對應階段的流速。平穩滲流階段歷時短,流速低,其發生次數隨n值增加而減少;滲流流速突增階段流速猛增達到峰值;近似管流階段保持較高流速,雖然偶爾產生波動,但整體相對平穩。研究成果可為斷層突水災害演化規律研究提供理論依據。

     

  • 圖  1  碧峰寺隧道F3斷層破碎帶

    Figure  1.  Bifeng temple tunnel F3 fault fracture zone

    圖  2  斷層破碎帶凝灰巖試樣X射線衍射結果. (a) D8 AdvanceX射線衍射儀; (b) 衍射強度圖譜; (c)礦物成分含量

    Figure  2.  X-ray diffraction results of tuff samples from fault fracture zone: (a) D8 Advance X-ray diffractometer; (b) diffraction intensity map; (c) mineral content

    圖  3  各粒徑區間破碎凝灰巖試樣

    Figure  3.  Fractured tuff samples in various particle size ranges

    圖  4  破碎巖石三軸滲流試驗系統及示意圖. (a)實物圖; (b)原理示意圖

    Figure  4.  Schematic diagram of triaxial permeability testing system for fractured rock: (a) physical map; (b) schematic diagram of principle

    圖  5  三軸破碎凝灰巖滲流試驗流程圖

    Figure  5.  Triaxial broken tuff seepage experiment flow chart

    圖  6  不同軸向位移下流失顆粒質量?時間擬合曲線. (a)軸向位移為3 mm; (b)軸向位移為6 mm; (c)軸向位移為9 mm; (d)軸向位移為12 mm

    Figure  6.  Lost particles mass–time fitting curve under different axial displacements: (a) axial displacement is 3 mm; (b) axial displacement is 6 mm; (c) axial displacement is 9 mm; (d) axial displacement is 12 mm

    圖  7  不同圍壓下流失顆粒質量?時間擬合曲線. (a) 軸向位移為3 mm,圍壓為0.8 MPa; (b) 軸向位移為3 mm,圍壓為1.4 MPa; (c) 軸向位移為6 mm,圍壓為0.8 MPa; (d) 軸向位移為6 mm,圍壓為1.4 MPa

    Figure  7.  Lost particles mass–time fitting curve under different confining pressures: (a) axial displacement is 3 mm, confining pressure is 0.8 MPa; (b) axial displacement is 3 mm, confining pressure is 1.4 MPa; (c) axial displacement is 6 mm, confining pressure is 0.8 MPa; (d) axial displacement is 6 mm, confining pressure is 1.4 MPa

    圖  8  流失顆粒質量與n值關系

    Figure  8.  Relationship between mass of lost particles and n value

    圖  9  三軸應力下不同級配試樣滲透過程中孔隙率?時間試驗結果(圖中AD指軸向位移,CP指圍壓). (a)n=0.2; (b)n=0.6

    Figure  9.  Porosity–time test results of specimens with different gradations during infiltration under triaxial stress (AD means axial displacement, CP means confining pressure): (a) n=0.2; (b) n=0.6

    圖  10  滲透試驗前后級配顆粒巖樣宏?細觀特征. (a)滲透試驗前顆粒特征; (b) 滲透試驗后顆粒特征

    Figure  10.  Macro-meso characteristics of granular rock samples before and after the permeation test: (a) particle characteristics before the penetration test; (b) particle characteristics after the penetration test.

    圖  11  試驗后不同n值級配試樣各粒徑區間質量變化(正值為增加,負值為減少)

    Figure  11.  The mass change of each particle size interval of samples with different n-value gradations after the test (+ indicates increased, ? indicates decreased)

    圖  12  三軸應力下破碎巖石滲透演化過程

    Figure  12.  Seepage evolution process of broken rock under triaxial stress

    圖  13  不同n值級配試樣滲透試驗中流速?時間試驗結果(圖中AD指軸向位移, CP指圍壓). (a) n=0.2; (b) n=0.4; (c) n=0.6; (d) n=0.8

    Figure  13.  Flow velocity–time test results of different Talbot power exponent gradation samples in penetration test (AD means axial displacement, CP means confining pressure): (a) n=0.2; (b) n=0.4; (c) n=0.6; (d) n=0.8

    圖  14  三軸滲透試驗與F3斷層突水演化過程

    Figure  14.  Triaxial permeability test and water inrush evolution process of F3 fault

    表  1  不同Talbot冪指數n值下的巖石顆粒質量

    Table  1.   Rock particle mass under different n

    Rock grain size/mmParticle mass/g
    n=0.2n=0.4n=0.6n=0.8
    0?0.25114.7654.8826.2412.55
    0.25?0.517.0717.5313.539.30
    0.5?119.6023.1420.5216.19
    1?222.5230.5231.0928.19
    2?534.9855.8266.9671.61
    5?1031.0758.1181.66102.16
    下載: 導出CSV
    久色视频
  • [1] Li S C, Xu Z H, Huang X, et al. Classification, geological identification, hazard mode and typical case studies of hazard-causing structures for water and mud inrush in tunnels. Chin J Rock Mech Eng, 2018, 37(5): 1041

    李術才, 許振浩, 黃鑫, 等. 隧道突水突泥致災構造分類、地質判識、孕災模式與典型案例分析. 巖石力學與工程學報, 2018, 37(5):1041
    [2] Li X Z, Zhang P X, He Z C, et al. Identification of geological structure which induced heavy water and mud inrush in tunnel excavation: A case study on Lingjiao tunnel. Tunn Undergr Space Technol, 2017, 69: 203 doi: 10.1016/j.tust.2017.06.014
    [3] Li S C, Chen Z Q, Miao X X, et al. Experimental study on the properties of time-dependent deformation-seepage in water-saturated broken sandstone. J Mini Saf Eng, 2011, 28(4): 542 doi: 10.3969/j.issn.1673-3363.2011.04.008

    李順才, 陳占清, 繆協興, 等. 飽和破碎砂巖隨時間變形?滲流特性試驗研究. 采礦與安全工程學報, 2011, 28(4):542 doi: 10.3969/j.issn.1673-3363.2011.04.008
    [4] Miu X X, Liu W Q, Chen Z Q. Seepage Theory of Mining Rock Mass. Beijing: Science Press, 2004

    繆協興, 劉衛群, 陳占清. 采動巖體滲流理論. 北京: 科學出版社, 2004
    [5] Chen Z Q, Li S C, Mao X B, et al. Experimental on the porosity changing of water-saturated granular limestone during its creep. J China Coal Soc, 2006, 31(1): 26 doi: 10.3321/j.issn:0253-9993.2006.01.006

    陳占清, 李順才, 茅獻彪, 等. 飽和含水石灰巖散體蠕變過程中孔隙度變化規律的試驗. 煤炭學報, 2006, 31(1):26 doi: 10.3321/j.issn:0253-9993.2006.01.006
    [6] Sun M G, Huang X W, Li T Z, et al. Seepage properties of non-Darcy flow in complete failure process of limestone. Chin J Rock Mech Eng, 2006, 25(3): 484 doi: 10.3321/j.issn:1000-6915.2006.03.008

    孫明貴, 黃先伍, 李天珍, 等. 石灰巖應力?應變全過程的非Darcy流滲透特性. 巖石力學與工程學報, 2006, 25(3):484 doi: 10.3321/j.issn:1000-6915.2006.03.008
    [7] Wang W, Xu W Y, Wang R B, et al. Permeability of dense rock under triaxial compression. Chin J Rock Mech Eng, 2015, 34(1): 40

    王偉, 徐衛亞, 王如賓, 等. 低滲透巖石三軸壓縮過程中的滲透性研究. 巖石力學與工程學報, 2015, 34(1):40
    [8] Du F, Li Z H, Jiang G H, et al. Types and mechanism of water-sand inrush disaster in west coal mine. J China Coal Soc, 2017, 42(7): 1846

    杜鋒, 李振華, 姜廣輝, 等. 西部礦區突水潰沙類型及機理研究. 煤炭學報, 2017, 42(7):1846
    [9] Yao B H. Research on Variable on Variable Mass Fluid-Solid Coupling Dynamic Theory of Broken Rockmass and Application [Dissertation]. Xuzhou: China University of Mining and Technology, 2012

    姚邦華. 破碎巖體變質量流固耦合動力學理論及應用研究[學位論文]. 徐州: 中國礦業大學, 2012
    [10] Liu W Q, Fei X D, Fang J N. Rules for confidence intervals of permeability coefficients for water flow in over-broken rock mass. Int J Min Sci Technol, 2012, 22(1): 29 doi: 10.1016/j.ijmst.2011.06.003
    [11] Ma D, Miao X X, Chen Z Q, et al. Experimental investigation of seepage properties of fractured rocks under different confining pressures. Rock Mech Rock Eng, 2013, 46(5): 1135
    [12] Ma D, Rezania M, Yu H S, et al. Variations of hydraulic properties of granular sandstones during water inrush: Effect of small particle migration. Eng Geol, 2017, 217: 61 doi: 10.1016/j.enggeo.2016.12.006
    [13] Ma D, Duan H Y, Liu J F, et al. The role of gangue on the mitigation of mining-induced hazards and environmental pollution: An experimental investigation. Sci Total Environ, 2019, 664: 436 doi: 10.1016/j.scitotenv.2019.02.059
    [14] Zhang T J, Shang H B, Li S G, et al. Permeability characteristics of broken sandstone and its stability analysis under step loading. J China Coal Soc, 2016, 41(5): 1129

    張天軍, 尚宏波, 李樹剛, 等. 分級加載下破碎砂巖滲透特性試驗及其穩定性分析. 煤炭學報, 2016, 41(5):1129
    [15] Zhang T J, Shang H B, Li S G, et al. Permeability tests of fractured sandstone with different sizes of fragments under three-dimensional stress states. Rock Soil Mech, 2018, 39(7): 2361

    張天軍, 尚宏波, 李樹剛, 等. 三軸應力下不同粒徑破碎砂巖滲透特性試驗. 巖土力學, 2018, 39(7):2361
    [16] Zhang T J, Zhang X F, Pang M K, et al. Effect of particle loss on the pore structure and emergent behavior of karst column fills. J China Coal Soc, 2021, 46(10): 3245

    張天軍, 張秀鋒, 龐明坤, 等. 顆粒流失對陷落柱充填物孔隙結構及突水行為的影響. 煤炭學報, 2021, 46(10):3245
    [17] Zhang B Y, Bai H B, Zhang K. Experimental research on seepage mutation mechanism of collapse column medium. Rock Soil Mechs, 2016, 37(3): 745

    張勃陽, 白海波, 張凱. 類陷落柱介質滲流突變機制試驗研究. 巖土力學, 2016, 37(3):745
    [18] Zhang B Y, Lin Z B, Wu J Y, et al. Seepage characteristics of broken rock inside collapse column under application of lateral limited uniaxial compression. J Min Saf Eng, 2020, 37(5): 1045

    張勃陽, 林志斌, 吳疆宇, 等. 側限條件下陷落柱破碎巖體的滲流特性研究. 采礦與安全工程學報, 2020, 37(5):1045
    [19] Feng M M, Wu J Y, Ma D, et al. Experimental investigation on the seepage property of saturated broken red sandstone of continuous gradation. Bull Eng Geol Environ, 2018, 77(3): 1167 doi: 10.1007/s10064-017-1046-z
    [20] Yang B, Xu Z H, Yang T H, et al. Experimental study of non-linear water flow through unconsolidated porous media under condition of high hydraulic gradient. Rock Soil Mech, 2018, 39(11): 4017

    楊斌, 徐曾和, 楊天鴻, 等. 高水力梯度條件下顆粒堆積型多孔介質滲流規律試驗研究. 巖土力學, 2018, 39(11):4017
    [21] Yu B Y, Chen Z Q, Yu L L. Water-resisting ability of cemented broken rocks. Int J Min Sci Technol, 2016, 26(3): 449 doi: 10.1016/j.ijmst.2016.02.013
    [22] Liu W T, Du Y H, Yu S J, et al. Research on permeability and acoustic emission characteristics of karst collapsed column skeleton sandstone under triaxial compression. Chin J Rock Mech Eng, 2021, 40(8): 1580

    劉偉韜, 杜衍輝, 于師建, 等. 陷落柱骨架砂巖三軸壓縮滲流特性及聲發射特征試驗研究. 巖石力學與工程學報, 2021, 40(8):1580
    [23] Wasantha P L P, Ranjith P G. Water-weakening behavior of Hawkesbury sandstone in brittle regime. Eng Geol, 2014, 178: 91 doi: 10.1016/j.enggeo.2014.05.015
    [24] Zhao J H, Yin L M, Guo W J. Stress-seepage coupling of cataclastic rock masses based on digital image technologies. Rock Mech Rock Eng, 2018, 51(8): 2355 doi: 10.1007/s00603-018-1474-5
    [25] Li Y S, Yang Y J, Yang S Q, et al. Deformation and acoustic emission behaviors of coal under triaxial compression and pore water pressure. J Univ Sci Technol Beijing, 2011, 33(6): 658

    李玉壽, 楊永杰, 楊圣奇, 等. 三軸及孔隙水作用下煤的變形和聲發射特性. 北京科技大學學報, 2011, 33(6):658
    [26] Yan B Q, Ren F H, Cai M F, et al. Research review of rock mechanics experiment and numerical simulation under THMC multi-field coupling. Chin J Eng, 2021, 43(1): 47

    顏丙乾, 任奮華, 蔡美峰, 等. THMC多場耦合作用下巖石力學實驗與數值模擬研究進展. 工程科學學報, 2021, 43(1):47
    [27] Li S C, Miao X X, Chen Z Q, et al. Experimental study on seepage properties of non-Darcy flow in confined broken rocks. Eng Mech, 2008, 25(4): 85

    李順才, 繆協興, 陳占清, 等. 承壓破碎巖石非Darcy滲流的滲透特性試驗研究. 工程力學, 2008, 25(4):85
    [28] Ma D, Duan H Y, Zhang J X, et al. Experimental investigation of creep-erosion coupling mechanical properties of water inrush hazards in fault fracture rock masses. Chin J Rock Mech Eng, 2021, 40(9): 1751

    馬丹, 段宏宇, 張吉雄, 等. 斷層破碎帶巖體突水災害的蠕變?沖蝕耦合力學特性試驗研究. 巖石力學與工程學報, 2021, 40(9):1751
    [29] Wu J Y, Han G S, Feng M M, et al. Mass-loss effects on the flow behavior in broken argillaceous red sandstone with different particle-size distributions. Comptes Rendus Mécanique, 2019, 347(6): 504
    [30] Feng M M, Wu J Y, Chen Z Q, et al. Experimental study on the compaction of saturated broken rock of continuous gradation. J China Coal Soc, 2016, 41(9): 2195

    馮梅梅, 吳疆宇, 陳占清, 等. 連續級配飽和破碎巖石壓實特性試驗研究. 煤炭學報, 2016, 41(9):2195
    [31] Xie H P, Gao F, Zhou H W, et al. Fractal fracture and fragmentation in rocks. J Disas Prev Mitig Eng, 2003, 23(4): 1

    謝和平, 高峰, 周宏偉, 等. 巖石斷裂和破碎的分形研究. 防災減災工程學報, 2003, 23(4):1
    [32] Yu J, Lü X B, Qin Y J. Experimental study on concrete beams without web reinforcement based on fractal theory. Chin J Eng, 2021, 43(10): 1385

    于江, 呂旭濱, 秦擁軍. 基于分形理論無腹筋混凝土梁的受剪性能. 工程科學學報, 2021, 43(10):1385
    [33] Zhang G T, Chen Y, Lu H B, et al. Fractal characteristics of fiber lithium slag concrete cracks under sulfate attack. Chin J Eng, 2022, 44(2): 208

    張廣泰, 陳勇, 魯海波, 等. 硫酸鹽侵蝕作用下纖維鋰渣混凝土裂縫的分形特征. 工程科學學報, 2022, 44(2):208
    [34] Zhu S, Wang Y M, Weng H Y. Study of scale effect of density of coarse-grained dam materials. Chin J Rock Mech Eng, 2011, 30(2): 348

    朱晟, 王永明, 翁厚洋. 粗粒筑壩材料密實度的縮尺效應研究. 巖石力學與工程學報, 2011, 30(2):348
    [35] Yin S H, Chen X, Liu C, et al. Effects of ore size distribution on the pore structure characteristics of packed ore beds. Chin J Eng, 2020, 42(8): 972

    尹升華, 陳勛, 劉超, 等. 礦石顆粒級配對堆浸體系三維孔隙結構的影響. 工程科學學報, 2020, 42(8):972
    [36] Xie D S, Cai H, Wei Y Q, et al. Scaling principle and method in seepage tests on coarse materials. Chin J Geotech Eng, 2015, 37(2): 369 doi: 10.11779/CJGE201502023

    謝定松, 蔡紅, 魏迎奇, 等. 粗粒土滲透試驗縮尺原則與方法探討. 巖土工程學報, 2015, 37(2):369 doi: 10.11779/CJGE201502023
    [37] Wu J Y, Feng M M, Mao X B, et al. Particle size distribution of aggregate effects on mechanical and structural properties of cemented rockfill: Experiments and modeling. Constr Build Mater, 2018, 193: 295 doi: 10.1016/j.conbuildmat.2018.10.208
    [38] Zhu G S, Zhang J F, Chen J S, et al. Study of size and wall effects in seepage test of broadly graded coarse materials. Rock Soil Mech, 2012, 33(9): 2569

    朱國勝, 張家發, 陳勁松, 等. 寬級配粗粒土滲透試驗尺寸效應及邊壁效應研究. 巖土力學, 2012, 33(9):2569
    [39] Liu M S, Luo Q, Jiang L W, et al. Boundary pore characteristics and optimal treatment thickness in seepage test of coarse grained soil. Rock Soil Mech, 2019, 40(5): 1787

    劉孟適, 羅強, 蔣良濰, 等. 粗粒土滲透試驗邊壁孔隙特征及處理層最優厚度研究. 巖土力學, 2019, 40(5):1787
    [40] Yu B Y, Chen Z Q, Wu J Y, et al. Experimental study of compaction and fractal properties of grain size distribution of saturated crushed mudstone with different gradations. Rock Soil Mech, 2016, 37(7): 1887

    郁邦永, 陳占清, 吳疆宇, 等. 飽和級配破碎泥巖壓實與粒度分布分形特征試驗研究. 巖土力學, 2016, 37(7):1887
  • 加載中
圖(14) / 表(1)
計量
  • 文章訪問數:  340
  • HTML全文瀏覽量:  234
  • PDF下載量:  30
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-11-22
  • 網絡出版日期:  2022-04-14
  • 刊出日期:  2022-07-01

目錄

    /

    返回文章
    返回