<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

龍芯處理器服務器芯片組的適配與實現

鄭臣明 姚宣霞 周芳 鄭雪峰 楊曉君 戴榮

鄭臣明, 姚宣霞, 周芳, 鄭雪峰, 楊曉君, 戴榮. 龍芯處理器服務器芯片組的適配與實現[J]. 工程科學學報, 2022, 44(7): 1244-1254. doi: 10.13374/j.issn2095-9389.2021.10.08.003
引用本文: 鄭臣明, 姚宣霞, 周芳, 鄭雪峰, 楊曉君, 戴榮. 龍芯處理器服務器芯片組的適配與實現[J]. 工程科學學報, 2022, 44(7): 1244-1254. doi: 10.13374/j.issn2095-9389.2021.10.08.003
ZHENG Chen-ming, YAO Xuan-xia, ZHOU Fang, ZHENG Xue-feng, YANG Xiao-jun, DAI Rong. Adaption and implementation of server chipsets for the Loongson CPU[J]. Chinese Journal of Engineering, 2022, 44(7): 1244-1254. doi: 10.13374/j.issn2095-9389.2021.10.08.003
Citation: ZHENG Chen-ming, YAO Xuan-xia, ZHOU Fang, ZHENG Xue-feng, YANG Xiao-jun, DAI Rong. Adaption and implementation of server chipsets for the Loongson CPU[J]. Chinese Journal of Engineering, 2022, 44(7): 1244-1254. doi: 10.13374/j.issn2095-9389.2021.10.08.003

龍芯處理器服務器芯片組的適配與實現

doi: 10.13374/j.issn2095-9389.2021.10.08.003
基金項目: 國家重大科技專項“核心電子器件、高端通用芯片及基礎軟件產品”資助項目(2017ZX01028-102)
詳細信息
    通訊作者:

    E-mail: yaoxuanxia@ustb.edu.cn

  • 中圖分類號: TP302.1

Adaption and implementation of server chipsets for the Loongson CPU

More Information
  • 摘要: 針對龍芯中央處理器(CPU)無對應高性能服務器芯片組的現狀,設計開發了一種為龍芯CPU篩選芯片組的架構,并實現了一種龍芯CPU和芯片組適配的方法。提出了采用現場可編程門陣列(FPGA)串聯在龍芯CPU和即將適配的多組芯片組之間的架構。借助于此架構,設計實現了在CPU和芯片組之間待處理物理信號線的連接方法,設計了兩者之間上下電時序配合的調試方法,設計實現了規避兩者信號協議差異的方法。借助該架構和這些方法能夠實現同時篩選多款芯片組的目的,避免了以前需要設計多款主板進行適配的情況,節省了重復研發主板的成本;找到了可以適配龍芯CPU的高性能服務器芯片組;其芯片組規格參數和性能高于目前龍芯CPU所用的芯片組,開拓了其在服務器領域的應用。

     

  • 圖  1  龍芯CPU和芯片組之間的適配架構

    Figure  1.  Adaptation architecture between Loongson CPU and chipsets

    圖  2  FPGA內部總體架構圖

    Figure  2.  Overall architecture of the FPGA

    圖  3  包含FPGA和各種芯片組的主板

    Figure  3.  Motherboard sample containing the FPGA various chipsets

    圖  4  HT總線調試流程

    Figure  4.  Flow of the HT bus debug

    圖  5  HT重要暫不確定控制信號線經適配證明后找到的正確連接方式

    Figure  5.  Appropriate connection of the important but temporarily indeterminate HT signals after effective adaptation

    圖  6  經適配證明后找到的正確電源時序

    Figure  6.  Correct power sequence after effective adaptation

    圖  7  SR5690+SP5100龍芯雙路服務器產品主板

    Figure  7.  Loongson two-way SMP motherboard product using SR5690 + SP5100 chipsets

    表  1  HT總線的連接信號線

    Table  1.   Hyper transport bus link signals

    SignalWidthDescription
    CAD2, 4, 8, or 16Command, addresses, and data (CAD). Carries HyperTransport? requests, responses, addresses, and data. CAD width can be different in each direction.
    CTL1, 2, or 4Differentiates control and data. Each byte of CAD has a control(CTL) signal in the Gen3 protocol. One CTL signal is used for an entire link in the Gen1 protocol.
    CLK1, 2, or 4Clocks(CLK)for the CAD and CTL signals. Each byte of CAD and its respective CTL signal has a separate clock signal.
    下載: 導出CSV

    表  2  HT總線的復位/初始化信號線

    Table  2.   Reset/Initialization signals of the HT bus

    SignalWidthDescription
    PWROK1Power and clocks are stable
    RESET#1Reset the HyperTransport? chain
    下載: 導出CSV

    表  3  HT總線的電源管理信號線

    Table  3.   Power management signals

    SignalWidthDescription
    LDTSTOP#1Enables and disables links during system state transitions
    LDTREQ#1Indicates link is active or requested by a device
    下載: 導出CSV

    表  4  芯片組規格對比

    Table  4.   Comparison of different chipset specifications

    ItemFeatures of 7A1000Features of SR5690 + SP5100
    HT busHT3.0 × 16HT3.0 × 16
    PCIE32 lanes42 lanes
    SATA3 × SATA2.06 × SATA2.0
    USB Ports6 × USB2.014 × USB2.0
    RASNoYes
    IOMMUNoYes
    下載: 導出CSV

    表  5  SPEC CPU2006性能對比

    Table  5.   Analysis of SPEC CPU2006 performance

    Serverint_speed_
    base
    int_rate_
    base
    fp_speed_
    base
    fp_rate_
    base
    7A1000 server12.3078.0712.0274.90
    SR5690+ SP5100 server13.0283.6012.8082.60
    Performance improvement/%67610
    下載: 導出CSV

    表  6  IOZone性能對比

    Table  6.   Analysis of IOzone performance

    Server512 Byte read speed/ (MB·s?1)(Average of three results)1 MB read speed/ (MB·s?1)(Average of three results)512 Byte write speed/ (MB·s?1)(Average of three results)1 MB write speed/ (MB·s?1)(Average of three results)
    7A1000 server38.56696.311.25306.76
    SR5690+SP5100 server43.19800.761.53383.45
    Performance improvement/%12152225
    下載: 導出CSV

    表  7  Netperf性能對比

    Table  7.   Analysis of Netperf performance

    ServerTCP Throughput/ (MB·s?1)
    (Average of three results)
    TCP transfer rate/ (Times·s?1)
    (Average of three results)
    UDP Throughput/ (MB·s?1)
    (Average of three results)
    UDP transfer rate/ (Times·s?1)
    (Average of three results)
    7A1000 server850.518738.91852.648999.10
    SR5690+SP5100 server935.569787.58946.439989.00
    Performance improvement/%10121111
    下載: 導出CSV
    久色视频
  • [1] Hu W W. Developing our own CPU should take the road of marketing driven technology. J Inf Secur Res, 2019, 5(5): 450

    胡偉武. 發展自主CPU應該走市場帶技術的道路. 信息安全研究, 2019, 5(5):450
    [2] Ni G N. Adhere to the self-reliance and self-improvement of IT innovation system technology, build a powerful network country and digital China. J Inf Secur Res, 2021, 7(1): 2 doi: 10.3969/j.issn.2096-1057.2021.01.001

    倪光南. 堅持信創科技自立自強建設網絡強國和數字中國. 信息安全研究, 2021, 7(1):2 doi: 10.3969/j.issn.2096-1057.2021.01.001
    [3] Ma W, Yao J B, Chang Y S, et al. Current situation and prospect of CPU development in China. Appl IC, 2019, 36(4): 5

    馬威, 姚靜波, 常永勝, 等. 國產CPU發展的現狀與展望. 集成電路應用, 2019, 36(4):5
    [4] Xiong J, Xia Z P, Lin J, et al. Study of performance test scheme of information system based on domestic CPU and OS. Comput Eng, 2015, 41(12): 82 doi: 10.3969/j.issn.1000-3428.2015.12.016

    熊婧, 夏仲平, 林軍, 等. 基于國產CPU/OS的信息系統性能測試方案研究. 計算機工程, 2015, 41(12):82 doi: 10.3969/j.issn.1000-3428.2015.12.016
    [5] Zhang Z G, Zheng N B, Zhou Z F, et al. The research and design of office information system based on homemade software and hardware. Comput Inf Technol, 2012, 20(5): 8 doi: 10.3969/j.issn.1005-1228.2012.05.003

    張忠革, 鄭年斌, 周澤峰, 等. 基于國產CPU/OS的辦公信息系統研究與設計. 電腦與信息技術, 2012, 20(5):8 doi: 10.3969/j.issn.1005-1228.2012.05.003
    [6] Hu X D, Yang J X, Zhu Y. Shenwei-1600: a high-performance multi-core microprocessor. Sci Sin Information, 2015, 45(4): 513 doi: 10.1360/N112014-00295

    胡向東, 楊劍新, 朱英. 高性能多核處理器申威1600. 中國科學:信息科學, 2015, 45(4):513 doi: 10.1360/N112014-00295
    [7] Shen J, Long B, Jiang H, et al. Implementation and optimization of vector trigonometric functions on phytium processors. J Comput Res Dev, 2020, 57(12): 2610 doi: 10.7544/issn1000-1239.2020.20190721

    沈潔, 龍標, 姜浩, 等. 飛騰處理器上向量三角函數的設計實現與優化. 計算機研究與發展, 2020, 57(12):2610 doi: 10.7544/issn1000-1239.2020.20190721
    [8] Fang J B, Du Q, Tang T, et al. Performance comparison between FT-1500A and Intel XEON. Comput Eng Sci, 2019, 41(1): 1 doi: 10.3969/j.issn.1007-130X.2019.01.001

    方建濱, 杜琦, 唐滔, 等. 飛騰處理器與商用處理器性能比較. 計算機工程與科學, 2019, 41(1):1 doi: 10.3969/j.issn.1007-130X.2019.01.001
    [9] Hu X D, Ke X M, Yin F, et al. Shenwei-26010: A high-performance many-core processor. J Comput Res Dev, 2021, 58(6): 1155 doi: 10.7544/issn1000-1239.2021.20201041

    胡向東, 柯希明, 尹飛, 等. 高性能眾核處理器申威26010. 計算機研究與發展, 2021, 58(6):1155 doi: 10.7544/issn1000-1239.2021.20201041
    [10] Hong W J, Li K L, Quan Z, et al. PETSc's heterogeneous parallel algorithm design and performance optimization on the Sunway TaihuLight system. Chin J Comput, 2017, 40(9): 2057 doi: 10.11897/SP.J.1016.2017.02057

    洪文杰, 李肯立, 全哲, 等. 面向神威·太湖之光的PETSc可擴展異構并行算法及其性能優化. 計算機學報, 2017, 40(9):2057 doi: 10.11897/SP.J.1016.2017.02057
    [11] Meng X F, Gao X, Cong M, et al. System performance optimization and analysis of Godson-3A multiprocessor. J Comput Res Dev, 2012, 49(Suppl 1): 137

    孟小甫, 高翔, 從明, 等. 龍芯3A多核處理器系統級性能優化與分析. 計算機研究與發展, 2012, 49(增刊1): 137
    [12] Zhao H, Wan J W, Bao Z G, et al. Application of independent and controllable technology in test missions. J Spacecr TT&C Technol, 2015, 34(2): 109

    趙輝, 萬俊偉, 鮑忠貴, 等. 自主可控技術在試驗任務領域的應用研究. 飛行器測控學報, 2015, 34(2):109
    [13] Yuan G X, Zhang Y Q, Yuan L. State of the art analysis of China HPC 2021. Comput Eng Sci, 2021, 43(12): 2091 doi: 10.3969/j.issn.1007-130X.2021.12.001

    袁國興, 張云泉, 袁良. 2021年中國高性能計算機發展現狀分析. 計算機工程與科學, 2021, 43(12):2091 doi: 10.3969/j.issn.1007-130X.2021.12.001
    [14] Cai F, Shen H H, Gao X. The design and implementation of north-bridge used in Godson-2 prototype system. Chin High Technol Lett, 2010, 20(1): 61

    蔡飛, 沈海華, 高翔. 龍芯2號原型系統北橋的設計與實現. 高技術通訊, 2010, 20(1): 61
    [15] Liu D, Li X, Xu S Y, et al. Design and implementation of homemade information processing platform. J Telem Track Command, 2018, 39(6): 7 doi: 10.3969/j.issn.2095-1000.2018.06.002

    劉達, 李鑫, 徐松艷, 等. 國產化信息處理平臺設計與實現. 遙測遙控, 2018, 39(6):7 doi: 10.3969/j.issn.2095-1000.2018.06.002
    [16] Zhu S S, Lu Y K, Liu L, et al. Design of AIO security computer based on Loongson CPU. Ind Control Comput, 2020, 33(11): 16 doi: 10.3969/j.issn.1001-182X.2020.11.006

    朱書杉, 路永軻, 劉磊, 等. 基于龍芯處理器的一體式安全計算機設計. 工業控制計算機, 2020, 33(11):16 doi: 10.3969/j.issn.1001-182X.2020.11.006
    [17] Zhao B, Yang M H, Liu W, et al. Research on security & trust computer based on Loongson CPU. Comput Technol Dev, 2015, 25(3): 126

    趙斌, 楊明華, 柳偉, 等. 基于龍芯處理器的自主可信計算機研究. 計算機技術與發展, 2015, 25(3):126
    [18] Wu J. The Design of North-bridge Used in Godson System[Dissertation]. Hefei: University of Science and Technology of China, 2003

    武杰. 龍芯系統中的北橋設計[學位論文]. 合肥: 中國科技大學, 2003
    [19] Evans A, Silburt A, Vrckovnik G, et al. Functional verification of large ASICs // Proceedings of the 35th annual Design Automation Conference. New York, 1998: 650
    [20] Ganapathy G, Narayan R, Jorden G, et al. Hardware emulation for functional verification of K5 // Proceedings of the 33rd Design Automation Conference. Las Vegas, 1996: 315
    [21] Ray J, Hoe J C. High-level modeling and FPGA prototyping of microprocessors // Proceedings of the 2003 ACM/SIGDA Eleventh International Symposium on Field Programmable Gate Arrays. Monterey, 2003: 100
    [22] Li X B, Tang Z M, Li W. FPGA verification for heterogeneous multi-core processor. J Comput Res Dev, 2021, 58(12): 2684 doi: 10.7544/issn1000-1239.2021.20200289

    李小波, 唐志敏, 李文. 面向異構多核處理器的FPGA驗證. 計算機研究與發展, 2021, 58(12):2684 doi: 10.7544/issn1000-1239.2021.20200289
    [23] Liu Y C, Wang J, Chen Y J, et al. Survey on computer system simulator. J Comput Res Dev, 2015, 52(1): 3 doi: 10.7544/issn1000-1239.2015.20140104

    劉雨辰, 王佳, 陳云霽, 等. 計算機系統模擬器研究綜述. 計算機研究與發展, 2015, 52(1):3 doi: 10.7544/issn1000-1239.2015.20140104
    [24] Gateley J, Blatt M, Chen D, et al. UltraSPARC-I emulation // Proceedings of the 32nd ACM/IEEE Conference on Design Automation Conference. San Francisco, 1995: 13
    [25] Zhou S J, Prasanna V K. Accelerating graph analytics on CPU-FPGA heterogeneous platform // 2017 29th International Symposium on Computer Architecture and High Performance Computing. Campinas, 2017: 137
    [26] Zhou H W, Xu S, Wang Z Y, et al. FPGA verification for memory link interface of many-core processor. J Natl Univ Def Technol, 2018, 40(3): 176 doi: 10.11887/j.cn.201803027

    周宏偉, 徐實, 王忠奕, 等. 眾核處理器訪存鏈路接口的FPGA驗證. 國防科技大學學報, 2018, 40(3):176 doi: 10.11887/j.cn.201803027
    [27] Pang K, Shi Z F, Zhou J H, et al. Network topology exploration of coarse-grained reconfigurable architecture based on FPGA. J Tianjin Univ Sci Technol, 2018, 51(5): 507

    龐科, 史再峰, 周佳慧, 等. 基于FPGA的粗粒度可重構系統拓撲網絡結構開發. 天津大學學報(自然科學與工程技術版), 2018, 51(5):507
    [28] Liu Y F, Liu P, Jiang Y T, et al. Building a multi-FPGA-based emulation framework to support networks-on-chip design and verification. Int J Electron, 2010, 97(10): 1241 doi: 10.1080/00207217.2010.512017
    [29] Hu W W, Wang J, Gao X, et al. Godson-3: A scalable multicore RISC processor with x86 emulation. IEEE Micro, 2009, 29(2): 17 doi: 10.1109/MM.2009.30
    [30] Kalla R, Sinharoy B, Tendler J M. IBM Power5 chip: A dual-core multithreaded processor. IEEE Micro, 2004, 24(2): 40 doi: 10.1109/MM.2004.1289290
    [31] Kongetira P, Aingaran K, Olukotun K. Niagara: a 32-way multithreaded Sparc processor. IEEE Micro, 2005, 25(2): 21 doi: 10.1109/MM.2005.35
    [32] Chen X M, Jha N K. A 3-D CPU-FPGA-DRAM hybrid architecture for low-power computation. IEEE Trans Very Large Scale Integr (VLSI)Syst, 2016, 24(5): 1649 doi: 10.1109/TVLSI.2015.2483525
    [33] Wang H D, Gao X, Chen Y J, et al. Interconnection of Godson-3 multi-core processor. J Comput Res Dev, 2008, 45(12): 2001

    王煥東, 高翔, 陳云霽, 等. 龍芯3號互聯系統的設計與實現. 計算機研究與發展, 2008, 45(12):2001
    [34] Feng K K, Jia F, Du X J, et al. Design and realization of HT interconnection and memory fault diagnosis method for Loongson-3 mainboard. Comput Meas Control, 2020, 28(6): 1

    馮珂珂, 賈凡, 杜曉杰, 等. 龍芯3號板卡HT互聯及內存故障診斷方法的設計與實現. 計算機測量與控制, 2020, 28(6):1
  • 加載中
圖(7) / 表(7)
計量
  • 文章訪問數:  658
  • HTML全文瀏覽量:  344
  • PDF下載量:  37
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-10-08
  • 網絡出版日期:  2022-01-17
  • 刊出日期:  2022-07-01

目錄

    /

    返回文章
    返回