<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

長水口吹氬生成微小氣泡工業實驗研究

劉建華 李巍 何楊 蘇曉峰 張杰 常芙蓉

劉建華, 李巍, 何楊, 蘇曉峰, 張杰, 常芙蓉. 長水口吹氬生成微小氣泡工業實驗研究[J]. 工程科學學報, 2022, 44(7): 1183-1191. doi: 10.13374/j.issn2095-9389.2021.09.15.009
引用本文: 劉建華, 李巍, 何楊, 蘇曉峰, 張杰, 常芙蓉. 長水口吹氬生成微小氣泡工業實驗研究[J]. 工程科學學報, 2022, 44(7): 1183-1191. doi: 10.13374/j.issn2095-9389.2021.09.15.009
LIU Jian-hua, LI Wei, HE Yang, SU Xiao-feng, ZHANG Jie, CHANG Fu-rong. Industrial experimental study on the formation of microbubbles by argon injection into ladle shroud[J]. Chinese Journal of Engineering, 2022, 44(7): 1183-1191. doi: 10.13374/j.issn2095-9389.2021.09.15.009
Citation: LIU Jian-hua, LI Wei, HE Yang, SU Xiao-feng, ZHANG Jie, CHANG Fu-rong. Industrial experimental study on the formation of microbubbles by argon injection into ladle shroud[J]. Chinese Journal of Engineering, 2022, 44(7): 1183-1191. doi: 10.13374/j.issn2095-9389.2021.09.15.009

長水口吹氬生成微小氣泡工業實驗研究

doi: 10.13374/j.issn2095-9389.2021.09.15.009
基金項目: 國家自然科學基金資助項目(51874028)
詳細信息
    通訊作者:

    E-mail: heyang2020@ustb.edu.cn

  • 中圖分類號: TF769.4

Industrial experimental study on the formation of microbubbles by argon injection into ladle shroud

More Information
  • 摘要: 在連鑄生產中采用大流量長水口吹氬,并采用“冷鋼片沾鋼法”沾取中間包鋼液試樣,成功沾取了中間包鋼液中微小氬氣泡。冷鋼片沾樣表面氣泡為中間包上部鋼/渣界面和爐渣中氬氣泡,尺寸主要位于1.0~3.0 mm,但該尺寸不能反映中間包鋼液內部長水口吹氬生成氣泡,冷鋼片沾樣內部氣泡為鋼液內部長水口吹氬生成的氣泡。結合掃描電鏡和共聚焦顯微鏡對沾取試樣內部氣泡形貌、尺寸和數量進行了分析,結果表明大部分氣泡為獨立圓形氣泡,偶見少量粘連和聚合氣泡;鋼液內部氬氣泡尺寸主要位于100~1000 μm,平均尺寸為500 μm左右;氣泡在長水口出口及其下方較為彌散,氣泡數量可達15.2 cm?2。采用掃描電鏡結合能譜分析,發現部分氣泡內粘附有夾雜物,有些氣泡粘附多個夾雜物;氣泡粘附Al2O3夾雜物的幾率高于粘附CaO(?MgO)?Al2O3?SiO2復合夾雜物的幾率。

     

  • 圖  1  連鑄長水口保護澆注與吹氬保護裝置示意圖

    Figure  1.  Schematic diagram of protective casting using a ladle shroud and argon injection device

    圖  2  長水口吹氬氬氣流股流動示意圖

    Figure  2.  Schematic diagram showing argon stream flow in ladle shroud

    圖  3  冷鋼片沾鋼法示意圖

    Figure  3.  Schematic diagram of dip sampling method using a cold steel sheet

    圖  4  冷鋼片沾樣表面氣泡形貌. (a) 1-豎片; (b) 2-豎片(爆裂氣泡坑); (c) 2-橫片表(渣皮爆落)

    Figure  4.  Shape of bubbles on the surface of a cold steel sheet: (a) 1-vertical steel sheet; (b) 2-vertical steel sheet (bubble collapse cavity); (c) 2-horizontal steel sheet (slag layer falls off)

    圖  5  冷鋼片沾取試樣表面氣泡尺寸分布圖

    Figure  5.  Bubble size distribution on the surface of a cold steel sheet

    圖  6  冷鋼片沾樣內部氣泡形貌. (a) 第1爐次; (b) 第2爐次

    Figure  6.  Shape of bubbles in a cold steel sheet: (a) the first test and (b) the second test

    圖  7  冷鋼片沾取試樣內部氣泡尺寸分布

    Figure  7.  Bubble size distribution in a cold steel sheet

    圖  8  冷鋼片沾取試樣中單個球形氣泡形貌及直徑尺寸

    Figure  8.  Shape and size of single spherical bubble in a cold steel sheet

    圖  9  冷鋼片沾取試樣中粘連與聚合氣泡形貌及尺寸

    Figure  9.  Shape and size of adhesive and polymeric bubbles in a cold steel sheet

    圖  10  冷鋼片沾樣內部氣泡尺寸分布掃描電鏡分析結果

    Figure  10.  Bubble size distribution in a cold steel sheet using SEM

    圖  11  沾鋼片表面氣泡形成示意圖

    Figure  11.  Diagram of bubble formation on the surface of a steel sheet

    圖  12  渣層覆蓋的氣泡表面受力示意圖

    Figure  12.  Diagram of forces on the bubble surface covered with a slag layer   

    圖  13  氣泡檢測直徑與實際直徑關系示意圖

    Figure  13.  Diagram of the relationship between DMea and DRea

    圖  14  氣泡粘附夾雜物和夾雜物成分能譜分析結果. (a)粘附Al2O3夾雜; (b)粘附CaO?Al2O3?SiO2復合夾雜

    Figure  14.  Bubbles adhere to inclusions and inclusion composition: (a) Al2O3; (b) CaO?Al2O3?SiO2

    表  1  冷鋼片沾取試樣表面氣泡數量及平均尺寸

    Table  1.   Number and average size of bubbles on the surface of a cold steel sheet

    Number of
    steel sheet
    0–1.0 mm1.0–3.0 mm3.0–5.0 mm5.0–10.0 mmTotalAverage size/mm
    1-vertical
    steel sheet
    037194603.12
    2-vertical
    steel sheet
    0481013713.02
    2-horizontal
    steel sheet
    02850332.13
    下載: 導出CSV
    久色视频
  • [1] Liu J H, Zhang J, Li K W. Current state and prospect of technologies for removing inclusion by bubbles. Steelmaking, 2017, 33(2): 1

    劉建華, 張杰, 李康偉. 氣泡去除夾雜物技術研究現狀及發展趨勢. 煉鋼, 2017, 33(2):1
    [2] Liu W J, Lee J, Guo X P, et al. Argon bubble coalescence and breakup in a steel ladle with bottom plugs. Steel Res Int, 2019, 90(4): 1800396 doi: 10.1002/srin.201800396
    [3] Sutherland K L. Physical chemistry of flotation. XI. kinetics of the flotation process. J Phys Chem, 1948, 52(2): 394
    [4] Zhang L, Taniguchi S. Fundamentals of inclusion removal from liquid steel by bubble flotation. Int Mater Rev, 2000, 45(2): 59 doi: 10.1179/095066000101528313
    [5] Rogler J P, Heaslip L J, Mehrvar M. Physical modelling of inclusion removal in a tundish by gas bubbling. Can Metall Q, 2005, 44(3): 357 doi: 10.1179/cmq.2005.44.3.357
    [6] Xue Z L, Wang Y F, Wang L T, et al. Inclusion removal from molten steel by attachment small bubbles. Acta Met Sin, 2003, 39(4): 431 doi: 10.3321/j.issn:0412-1961.2003.04.019

    薛正良, 王義芳, 王立濤, 等. 用小氣泡從鋼液中去除夾雜物顆粒. 金屬學報, 2003, 39(4):431 doi: 10.3321/j.issn:0412-1961.2003.04.019
    [7] Zhang J, Liu J H, Yu S J, et al. Bubble growth and floating behavior during degassing process of molten steel/(N2, H2) system. ISIJ Int, 2020, 60(3): 470 doi: 10.2355/isijinternational.ISIJINT-2018-875
    [8] Chang L Z, Shi X F, Wang J J, et al. Effect of ultrasonic power on distribution of Al2O3 inclusions in ESR ingots. Chin J Process Eng, 2015, 15(1): 79

    常立忠, 施曉芳, 王建軍, 等. 超聲波功率對電渣鋼錠中氧化鋁夾雜物分布的影響. 過程工程學報, 2015, 15(1):79
    [9] Guo X L, Yu J B, Ren X F, et al. The mechanism of inclusion removal from molten steel by dissolved gas flotation. Ironmak Steelmak, 2018, 45(7): 648 doi: 10.1080/03019233.2017.1317509
    [10] Wang X F, Tang F P, Yao W Z, et al. Novel concept of fine inclusion removal using carbonate powder injection through the ladle shroud. Ironmak Steelmak, 2019, 46(9): 906 doi: 10.1080/03019233.2019.1629778
    [11] Furumai K, Murai T, Aramaki N, et al. Effect of gas flow rate, bubble size and inclusion size on inclusion removal under high throughput conditions using water model experiment. Tetsu-to-Hagane, 2017, 103(9): 517 doi: 10.2355/tetsutohagane.TETSU-2017-014
    [12] Zhang J, Liu J H, Yan B J, et al. Nonmetallic inclusion removal of Si-Mn deoxidized steel by nitrogen absorption and release method. Chin J Eng, 2018, 40(8): 937

    張杰, 劉建華, 閆柏軍, 等. 增氮析氮法去除硅錳脫氧鋼中夾雜物的研究. 工程科學學報, 2018, 40(8):937
    [13] Singh P K, Mazumdar D. A physical model study of two-phase gas–liquid flows in a ladle shroud. Metall Mater Trans B, 2018, 49(4): 1945 doi: 10.1007/s11663-018-1297-5
    [14] Zhu M M, Zhou W, Hu S B. Effect of bowing methods at long nozzle on inclusions removal. Mater Rev, 2013, 27(18): 145

    祝明妹, 周旺, 胡勝波. 中間包長水口吹氣方式對夾雜物去除效果的影響. 材料導報, 2013, 27(18):145
    [15] Fan A Y, Wen G H, Li J X, et al. Present situation and prospect of fine gas bubbles formation in the ladle shroud. Steelmaking, 2015, 31(2): 67

    樊安源, 文光華, 李敬想, 等. 鋼包長水口內小氣泡形成的研究現狀與展望. 煉鋼, 2015, 31(2):67
    [16] Guthrie R, Isac M. Towards forming micro-bubbles in liquid steel // Proceedings of the First Global Conference on Extractive Metallurgy. Ottawa, 2018: 729
    [17] Yang X F, Chang W J, Zhong L C, et al. Experiment of bubble behavior in argon blowing through long shroud of continuous casting. Steelmaking, 2018, 34(2): 12

    陽祥富, 常文杰, 鐘良才, 等. 連鑄長水口吹氬氣泡行為的試驗研究. 煉鋼, 2018, 34(2):12
    [18] Bai H, Thomas B G. Bubble formation during horizontal gas injection into downward-flowing liquid. Metall Mater Trans B, 2001, 32(6): 1143 doi: 10.1007/s11663-001-0102-y
    [19] Chang S, Cao X K, Zou Z S. Regimes of micro-bubble formation using gas injection into ladle shroud. Metall Mater Trans B, 2018, 49(3): 953 doi: 10.1007/s11663-018-1231-x
    [20] Chatterjee S, Chattopadhyay K. Physical modeling of slag ‘eye’ in an inert gas-shrouded tundish using dimensional analysis. Metall Mater Trans B, 2016, 47(1): 508 doi: 10.1007/s11663-015-0512-x
    [21] Jin K, Thomas B G, Ruan X M. Modeling and measurements of multiphase flow and bubble entrapment in steel continuous casting. Metall Mater Trans B, 2016, 47(1): 548 doi: 10.1007/s11663-015-0525-5
    [22] Cramb A W, Jimbo I. Interfacial considerations in continuous casting. Iron Steelmaker, 1989, 16(6): 43
    [23] Zhang J Y. Physical Chemistry of Metallurgy. Beijing: Metallurgical Industry Press, 2004

    張家蕓. 冶金物理化學. 北京: 冶金工業出版社, 2004
    [24] Valdez M, Shannon G S, Sridhar S. The ability of slags to absorb solid oxide inclusions. ISIJ Int, 2006, 46(3): 450 doi: 10.2355/isijinternational.46.450
    [25] Arai H, Matsumoto K, Shimasaki S I, et al. Model experiment on inclusion removal by bubble flotation accompanied by particle coagulation in turbulent flow. ISIJ Int, 2009, 49(7): 965 doi: 10.2355/isijinternational.49.965
    [26] Liu W. Model Study of Non-Metallic Inclusion Removal through Steel-Slag Interface Micro-Process [Dissertation]. Beijing: University of Science and Technology Beijing, 2020

    劉威. 鋼中非金屬夾雜物界面去除過程微觀模型研究[學位論文]. 北京: 北京科技大學, 2020
  • 加載中
圖(14) / 表(1)
計量
  • 文章訪問數:  645
  • HTML全文瀏覽量:  274
  • PDF下載量:  52
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-09-15
  • 網絡出版日期:  2021-10-27
  • 刊出日期:  2022-07-01

目錄

    /

    返回文章
    返回