<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

質子交換膜電解制氫氫氣滲透研究進展

葉青 宋潔 侯坤 郭志遠 徐桂芝 鄧占鋒 李寶讓

葉青, 宋潔, 侯坤, 郭志遠, 徐桂芝, 鄧占鋒, 李寶讓. 質子交換膜電解制氫氫氣滲透研究進展[J]. 工程科學學報, 2022, 44(7): 1274-1281. doi: 10.13374/j.issn2095-9389.2021.08.02.003
引用本文: 葉青, 宋潔, 侯坤, 郭志遠, 徐桂芝, 鄧占鋒, 李寶讓. 質子交換膜電解制氫氫氣滲透研究進展[J]. 工程科學學報, 2022, 44(7): 1274-1281. doi: 10.13374/j.issn2095-9389.2021.08.02.003
YE Qing, SONG Jie, HOU Kun, GUO Zhi-yuan, XU Gui-zhi, DENG Zhan-feng, LI Bao-rang. Review of hydrogen permeation in PEM water electrolysis[J]. Chinese Journal of Engineering, 2022, 44(7): 1274-1281. doi: 10.13374/j.issn2095-9389.2021.08.02.003
Citation: YE Qing, SONG Jie, HOU Kun, GUO Zhi-yuan, XU Gui-zhi, DENG Zhan-feng, LI Bao-rang. Review of hydrogen permeation in PEM water electrolysis[J]. Chinese Journal of Engineering, 2022, 44(7): 1274-1281. doi: 10.13374/j.issn2095-9389.2021.08.02.003

質子交換膜電解制氫氫氣滲透研究進展

doi: 10.13374/j.issn2095-9389.2021.08.02.003
基金項目: 國家電網公司科技資助項目(5500-202058448A-0-0-00)
詳細信息
    通訊作者:

    E-mail: dengzhanfeng@geiri.sgcc.com.cn

  • 中圖分類號: TK91

Review of hydrogen permeation in PEM water electrolysis

More Information
  • 摘要: 由于膜的吸水特性,高壓質子交換膜(PEM)制氫(尤其是差壓式,氫側高壓/氧側常壓)存在氫氣滲透問題,影響電解堆的運行安全與效率。基于菲克定律描述的滲透通量與滲透率、分壓差的關系,綜述了溫度/壓力、膜水合程度、氫氣分壓差對氫氣滲透的影響規律。在常規運行壓力范圍(3.5 MPa)內,擴散系數與溶解度主要受溫度影響,溫度升高則滲透率增大;氫氣滲透率隨膜水合程度的增加而增大;氫氣分壓差對滲透的影響表現出線性(滲透池環境)與非線性(電解制氫環境)兩種關系,非線性可能源于膜透水性提升與水通道結構改變引起的對流滲透。考慮到電解制氫實際工況存在電流,綜述了電流密度對氫滲透的影響,氫氣滲透率隨運行電流密度的升高而增大,氫過飽和是可能的影響機理,高電流密度下氫過飽和度升高,導致氫氣通過膜的滲透增加。

     

  • 圖  1  氫氣在液態水中溶解度S隨溫度T變化的阿瑞尼斯圖[1517]

    Figure  1.  Arrhenius plots of hydrogen solubility $(S_{\rm{H}_{2}})$ in liquid water[1517]

    圖  2  氫氣在不同干濕狀態下Nafion117質子交換膜中滲透率的阿瑞尼斯圖[15, 19-26]

    Figure  2.  Arrhenius plots of hydrogen permeability in a Nafion 117 membrane at dry and wet conditions[15, 1926]

    圖  3  Nafion212膜在80 °C條件下的滲透率與相對濕度、歸一化水含量的關系[14]

    Figure  3.  Permeability of Nafion 212 at 80 ℃ as a function of relative humidity and normalized water content[14]

    圖  4  氫氣以不同路徑滲透通過PEM的示意圖(灰色區域代表固相, 藍色區域代表水相, 白色代表孔洞; 左側為干膜, 右側為濕膜)[14]

    Figure  4.  Descriptive sketch of the pathways for gas permeation through a segment of PEM exemplified for hydrogen molecules (The solid polymeric phase is depicted as the gray area, water as the blue area, and pores filled with gas as the white area; left: dry PEM; right: hydrated PEM)[14]

    圖  5  Nafion膜三維結構模型的截面圖,圖中橫縱坐標表示200個網格單位,每個網格單位對應邊長為0.21 nm的立方體(灰色區域: 固相, 藍色區域: 水相, 綠色區域: 中間相)[27]

    Figure  5.  Two-dimensional cross section of the modeled three-dimensional cubic structure of Nafion with an edge length of 200 segments. One segment of the mesh corresponds to a cube with 0.21 nm edge length. (Gray area: solid phase; blue area: aqueous phase; green area: intermediate phase)[27]

    圖  6  通過Nafion117膜的氫氣滲透通量與氫氣分壓的關系曲線[14]

    Figure  6.  Measured hydrogen permeation flux density through a Nafion N117 membrane as a function of partial hydrogen pressure[14]

    圖  7  不同溫度下電解池中氫氣滲透通量與分壓差的關系曲線(陽極壓力為0.1 MPa)[28]

    Figure  7.  Hydrogen permeation flux as a function of a pressure difference for a PEM electrolyzer cell at asymmetric pressure and at different temperatures (pa = 0.1 MPa) [28]

    圖  8  60 °C條件下氫氣滲透通量與壓力差的關系曲線 [28]

    Figure  8.  Hydrogen permeation flux at 60 ℃ as a function of pressure difference [28]

    圖  9  測量條件示意圖. (a) 水電解條件下測量; (b) 滲透池條件下測量(未施加電流)[28]

    Figure  9.  Schematic measurement conditions for (a) measurement during electrolysis and (b) measurement in a permeation cell without applying current[28]

    Note: $ c_{{{\text{H}}_{\text{2}}}}^{\text{c}} $ is the dissolved hydrogen concentration in the cathode, mol·m-3; $ {S_{{{\text{H}}_{\text{2}}}}} $ is the solubility of hydrogen in water, mol·m-3·Pa-1; $ p_{{{\text{H}}_{\text{2}}}}^{\text{c}} $ is the hydrogen pressure in the cathode, Pa

    圖  10  不同文獻中運行電流密度對氫氣滲透影響的關系曲線對比. (a)氧中氫體積分數; (b) 氫氣滲透通量[33-35]

    Figure  10.  Comparison of effects of current density on hydrogen permeation: (a) hydrogen volume fraction; (b) hydrogen permeation rate[33-35]

    圖  11  陰極催化層離聚物中氫過飽和示意圖[33]

    Figure  11.  Sketch of the hydrogen supersaturation within the ionomer film of the cathode[33]

    Note:$ c_{{{\text{H}}_{\text{2}}}}^ * $is the dissolved hydrogen concentration within the ionomer, mol·m−3; $ p_{{{\text{H}}_{\text{2}}}}^{\text{a}} $ is the hydrogen pressure in the anode, Pa; $ p_{{{\text{H}}_{\text{2}}}}^{\text{c}} $is the hydrogen pressure in the cathode, Pa; PTL is Porous transport layer

    久色视频
  • [1] Grigoriev S A, Fateev V N, Bessarabov D G, et al. Current status, research trends, and challenges in water electrolysis sience and technology. Int J Hydrog Energy, 2020, 45(49): 26036 doi: 10.1016/j.ijhydene.2020.03.109
    [2] Liu S M, Deng Z F, Xu G Z, et al. Commercialization and future development of the solid oxide fuel cell (SOFC) in Europe. Chin J Eng, 2020, 42(3): 278

    劉少名, 鄧占鋒, 徐桂芝, 等. 歐洲固體氧化物燃料電池(SOFC)產業化現狀. 工程科學學報, 2020, 42(3):278
    [3] Kumar S S, Himabindu V. Hydrogen production by PEM water electrolysis-A review. Mater Sci Energy Technol, 2019, 2(3): 442
    [4] Ayers K. High efficiency PEM water electrolysis: Enabled by advanced catalysts, membranes, and processes. Curr Opin Chem Eng, 2021, 33: 100719 doi: 10.1016/j.coche.2021.100719
    [5] Koponen J, Kosonen A, Ruuskanen V, et al. Control and energy efficiency of PEM water electrolyzers in renewable energy systems. Int J Hydrog Energy, 2017, 42(50): 29648 doi: 10.1016/j.ijhydene.2017.10.056
    [6] Suermann M, P?tru A, Schmidt T J, et al. High pressure polymer electrolyte water electrolysis: Test bench development and electrochemical analysis. Int J Hydrog Energ, 2017, 42(17): 12076 doi: 10.1016/j.ijhydene.2017.01.224
    [7] Lee B, Heo J, Kim S, et al. Economic feasibility studies of high pressure PEM water electrolysis for distributed H2 refueling stations. Energy Convers Manag, 2018, 162: 139 doi: 10.1016/j.enconman.2018.02.041
    [8] Sartory M, Walln?fer-Ogris E, Salman P, et al. Theoretical and experimental analysis of an asymmetric high pressure PEM water electrolyser up to 155 bar. Int J Hydrog Energy, 2017, 42(52): 30493 doi: 10.1016/j.ijhydene.2017.10.112
    [9] Papakonstantinou G, Sundmacher K. H2 permeation through N117 and its consumption by IrOx in PEM water electrolyzers. Electrochem Commun, 2019, 108: 106578 doi: 10.1016/j.elecom.2019.106578
    [10] Afshari E, Khodabakhsh S, Jahantigh N, et al. Performance assessment of gas crossover phenomenon and water transport mechanism in high pressure PEM electrolyzer. Int J Hydrog Energy, 2021, 46(19): 11029 doi: 10.1016/j.ijhydene.2020.10.180
    [11] Siracusano S, Trocino S, Briguglio N, et al. Analysis of performance degradation during steady-state and load-thermal cycles of proton exchange membrane water electrolysis cells. J Power Sources, 2020, 468: 228390 doi: 10.1016/j.jpowsour.2020.228390
    [12] Khatib F N, Wilberforce T, Ijaodola O, et al. Material degradation of components in polymer electrolyte membrane (PEM) electrolytic cell and mitigation mechanisms: A review. Renew Sustain Energy Rev, 2019, 111: 1 doi: 10.1016/j.rser.2019.05.007
    [13] Frensch S H, Fouda-Onana F, Serre G, et al. Influence of the operation mode on PEM water electrolysis degradation. Int J Hydrog Energy, 2019, 44(57): 29889 doi: 10.1016/j.ijhydene.2019.09.169
    [14] Schalenbach M, Hoefner T, Paciok P, et al. Gas permeation through nafion. part 1: Measurements. J Phys Chem C, 2015, 119(45): 25145
    [15] Ito H, Maeda T, Nakano A, et al. Properties of Nafion membranes under PEM water electrolysis conditions. Int J Hydrog Energy, 2011, 36(17): 10527 doi: 10.1016/j.ijhydene.2011.05.127
    [16] Battino R, Clever H L. The solubility of gases in liquids. Chem?Rev, 1966, 66(4): 395
    [17] Mann R F, Amphlett J C, Peppley B A, et al. Henry's Law and the solubilities of reactant gases in the modelling of PEM fuel cells. J Power Sources, 2006, 161(2): 768 doi: 10.1016/j.jpowsour.2006.05.054
    [18] Wise D L, Houghton G. The diffusion coefficients of ten slightly soluble gases in water at 10?60 ℃. Chem Eng Sci, 1966, 21(11): 999 doi: 10.1016/0009-2509(66)85096-0
    [19] Sakai T, Takenaka H, Wakabayashi N, et al. Gas permeation properties of solid polymer electrolyte (SPE) membranes. J Electrochem Soc, 1985, 132(6): 1328 doi: 10.1149/1.2114111
    [20] Yoshitake M, Tamura M, Yoshida N, et al. Studies of perfluorinated ion exchange membranes for polymer electrolyte fuel cells. Denki Kagaku, 1996, 64(6): 727 doi: 10.5796/kogyobutsurikagaku.64.727
    [21] Kocha S S, Yang J D, Yi J S. Characterization of gas crossover and its implications in PEM fuel cells. Aiche J, 2006, 52(5): 1916 doi: 10.1002/aic.10780
    [22] Broka K, Ekdunge P. Oxygen and hydrogen permeation properties and water uptake of Nafion? 117 membrane and recast film for PEM fuel cell. J Appl Electrochem, 1997, 27(2): 117 doi: 10.1023/A:1018469520562
    [23] Barbir F. PEM electrolysis for production of hydrogen from renewable energy sources. Sol Energy, 2005, 78(5): 661 doi: 10.1016/j.solener.2004.09.003
    [24] Sakai T, Takenaka H, Torikai E. Gas diffusion in the dried and hydrated nafions. J Electrochem Soc, 1986, 133(1): 88 doi: 10.1149/1.2108551
    [25] Chiou J S, Paul D R. Gas permeation in a dry Nafion membrane. Ind Eng Chem Res, 1988, 27(11): 2161 doi: 10.1021/ie00083a034
    [26] Mohamed H F M, Ito K, Kobayashi Y, et al. Free volume and permeabilities of O2 and H2 in Nafion membranes for polymer electrolyte fuel cells. Polymer, 2008, 49(13-14): 3091 doi: 10.1016/j.polymer.2008.05.003
    [27] Schalenbach M, Hoeh M A, Gostick J T, et al. Gas?permeation through?nafion. part 2: Resistor network model. J Phys Chem C, 2015, 119(45): 25156
    [28] Trinke P, Bensmann B, Reichstein S, et al. Hydrogen permeation in PEM electrolyzer cells operated at asymmetric pressure conditions. J Electrochem Soc, 2016, 163(11): F3164 doi: 10.1149/2.0221611jes
    [29] Duan Q J, Wang H P, Benziger J. Transport of liquid water through Nafion membranes. J Membr Sci, 2012, 392-393: 88 doi: 10.1016/j.memsci.2011.12.004
    [30] Sellin R C, Mozet K, Ménage A, et al. Measuring electro-osmotic drag coefficients in PFSA membranes without any diffusion assumption. Int J Hydrog Energy, 2019, 44(45): 24905 doi: 10.1016/j.ijhydene.2019.07.076
    [31] Wakita H, Kawabata N, Kani Y. Measurement of water permeation through membranes from extremely high hydraulic pressure to atmospheric pressure. Int J Hydrog Energy, 2019, 44(59): 31257 doi: 10.1016/j.ijhydene.2019.10.037
    [32] Shin H S, Oh B S. Water transport according to temperature and current in PEM water electrolyzer. Int J Hydrog Energy, 2020, 45(1): 56 doi: 10.1016/j.ijhydene.2019.10.209
    [33] Trinke P, Bensmann B, Hanke-Rauschenbach R. Current density effect on hydrogen permeation in PEM water electrolyzers. Int J Hydrog Energy, 2017, 42(21): 14355 doi: 10.1016/j.ijhydene.2017.03.231
    [34] Schalenbach M, Carmo M, Fritz D L, et al. Pressurized PEM water electrolysis: Efficiency and gas crossover. Int J Hydrog Energy, 2013, 38(35): 14921 doi: 10.1016/j.ijhydene.2013.09.013
    [35] Grigoriev S A, Millet P, Korobtsev S V, et al. Hydrogen safety aspects related to high-pressure polymer electrolyte membrane water electrolysis. Int J Hydrog Energy, 2009, 34(14): 5986 doi: 10.1016/j.ijhydene.2009.01.047
    [36] Ito H, Miyazaki N, Ishida M, et al. Cross-permeation and consumption of hydrogen during proton exchange membrane electrolysis. Int J Hydrog Energy, 2016, 41(45): 20439 doi: 10.1016/j.ijhydene.2016.08.119
    [37] Han B, Mo J K, Kang Z Y, et al. Effects of membrane electrode assembly properties on two-phase transport and performance in proton exchange membrane electrolyzer cells. Electrochimica Acta, 2016, 188: 317 doi: 10.1016/j.electacta.2015.11.139
    [38] Bromberger K, Ghinaiya J, Lickert T, et al. Hydraulic ex situ through-plane characterization of porous transport layers in PEM water electrolysis cells. Int J Hydrog Energy, 2018, 43(5): 2556 doi: 10.1016/j.ijhydene.2017.12.042
    [39] St?hler M, St?hler A, Scheepers F, et al. Impact of porous transport layer compression on hydrogen permeation in PEM water electrolysis. Int J Hydrog Energy, 2020, 45(7): 4008 doi: 10.1016/j.ijhydene.2019.12.016
    [40] Immerz C, Schweins M, Trinke P, et al. Experimental characterization of inhomogeneity in current density and temperature distribution along a single-channel PEM water electrolysis cell. Electrochimica Acta, 2018, 260: 582 doi: 10.1016/j.electacta.2017.12.087
    [41] Olesen A C, Frensch S H, K?r S K. Towards uniformly distributed heat, mass and charge: A flow field design study for high pressure and high current density operation of PEM electrolysis cells. Electrochimica Acta, 2019, 293: 476 doi: 10.1016/j.electacta.2018.10.008
    [42] Parra-Restrepo J, Bligny R, Dillet J, et al. Influence of the porous transport layer properties on the mass and charge transfer in a segmented PEM electrolyzer. Int J Hydrog Energy, 2020, 45(15): 8094 doi: 10.1016/j.ijhydene.2020.01.100
    [43] Matsushima H, Kiuchi D, Fukunaka Y. Measurement of dissolved hydrogen supersaturation during water electrolysis in a magnetic field. Electrochimica Acta, 2009, 54(24): 5858 doi: 10.1016/j.electacta.2009.05.044
    [44] Tanaka Y, Kikuchi K, Saihara Y, et al. Bubble visualization and electrolyte dependency of dissolving hydrogen in electrolyzed water using Solid-Polymer-Electrolyte. Electrochimica Acta, 2005, 50(25-26): 5229 doi: 10.1016/j.electacta.2005.01.062
    [45] Paliwal S, Panda D, Bhaskaran S, et al. Lattice Boltzmann method to study the water-oxygen distributions in porous transport layer (PTL) of polymer electrolyte membrane (PEM) electrolyser. Int J Hydrog Energy, 2021, 46(44): 22747 doi: 10.1016/j.ijhydene.2021.04.112
    [46] Zinser A, Papakonstantinou G, Sundmacher K. Analysis of mass transport processes in the anodic porous transport layer in PEM water electrolysers. Int J Hydrog Energy, 2019, 44(52): 28077 doi: 10.1016/j.ijhydene.2019.09.081
    [47] Omrani R, Shabani B. Hydrogen crossover in proton exchange membrane electrolysers: The effect of current density, pressure, temperature, and compression. Electrochimica Acta, 2021, 377: 138085 doi: 10.1016/j.electacta.2021.138085
    [48] Trinke P, Bensmann B, Hanke-Rauschenbach R. Experimental evidence of increasing oxygen crossover with increasing current density during PEM water electrolysis. Electrochem Commun, 2017, 82: 98 doi: 10.1016/j.elecom.2017.07.018
  • 加載中
圖(11)
計量
  • 文章訪問數:  1659
  • HTML全文瀏覽量:  888
  • PDF下載量:  266
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-08-02
  • 網絡出版日期:  2021-09-08
  • 刊出日期:  2022-07-01

目錄

    /

    返回文章
    返回