<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

因果推斷三種分析框架及其應用綜述

馬忠貴 徐曉晗 劉雪兒

馬忠貴, 徐曉晗, 劉雪兒. 因果推斷三種分析框架及其應用綜述[J]. 工程科學學報, 2022, 44(7): 1231-1243. doi: 10.13374/j.issn2095-9389.2021.07.04.002
引用本文: 馬忠貴, 徐曉晗, 劉雪兒. 因果推斷三種分析框架及其應用綜述[J]. 工程科學學報, 2022, 44(7): 1231-1243. doi: 10.13374/j.issn2095-9389.2021.07.04.002
MA Zhong-gui, XU Xiao-han, LIU Xue-er. Three analytical frameworks of causal inference and their applications[J]. Chinese Journal of Engineering, 2022, 44(7): 1231-1243. doi: 10.13374/j.issn2095-9389.2021.07.04.002
Citation: MA Zhong-gui, XU Xiao-han, LIU Xue-er. Three analytical frameworks of causal inference and their applications[J]. Chinese Journal of Engineering, 2022, 44(7): 1231-1243. doi: 10.13374/j.issn2095-9389.2021.07.04.002

因果推斷三種分析框架及其應用綜述

doi: 10.13374/j.issn2095-9389.2021.07.04.002
基金項目: 中央高校基本科研業務費專項資金資助項目(FRF-DF-20-12, FRF-GF-18-017B)
詳細信息
    通訊作者:

    E-mail: g_runeko@163.com

  • 中圖分類號: TG142.71

Three analytical frameworks of causal inference and their applications

More Information
  • 摘要: 介紹因果推斷所涉及的基本概念及其三種分析框架:反事實框架、潛在結果模型和結構因果模型。首先,從反事實框架介紹因果效應的發端;然后,從基于反事實的兩個因果推斷分析框架:潛在結果模型和結構因果模型,來分別闡述兩個分析框架所涉及的關鍵理論和應用方法。其中,潛在結果模型使用數學和可計算的語言對因果理論進行闡述,是一種將假設、命題和結論清晰化表達的計算模型,其在原因和結果變量已知的前提下定量分析原因變量對結果變量的因果效應,并對缺失的潛在結果進行補齊,使觀察性研究的效果接近試驗性研究。結構因果模型則是一種基于圖論的因果推斷方法,它將事件分為觀察、干預和反事實三個層級,并通過do運算將干預和反事實層級的因果關系都降維成可以通過統計學手段解決的問題。最后,探討了現今多領域內因果推斷的應用場景,并總結了三種分析框架的異同點。

     

  • [1] Sabine G H, Russell B. A history of western philosophy and its connection with political and social circumstances from the earliest times to the present day. Am Hist Rev, 1946, 51(3): 485 doi: 10.2307/1840112
    [2] Zhang D S, Sun G J. On the methodological characteristic and value of mill’s five canons. J Central China Norm Univ (Humanit Soc Sci), 2001, 40(6): 19

    張大松, 孫國江. 論穆勒五法的方法論特征與價值. 華中師范大學學報(人文社會科學版), 2001, 40(6):19
    [3] Ying Q, Xu D S. Hume and the birth of analytical action philosophy—from the point of “causal explanation”. Tianjin Soc Sci, 2021, 12(2): 57

    應奇, 徐東舜. 休謨與分析性行動哲學的誕生—從“因果解釋”視角看. 天津社會科學, 2021, 12(2):57
    [4] Granger C W J. Investigating causal relations by econometric models and cross-spectral methods. Econometrica, 1969, 37(3): 424 doi: 10.2307/1912791
    [5] Heckman J J. Econometric causality. Int Statistical Rev, 2008, 76(1): 1 doi: 10.1111/j.1751-5823.2007.00024.x
    [6] Cook T D, Campbell D, Shadish W. Experimental and Quasi-experimental Designs for Generalized Causal Inference. Boston: Houghton Mifflin, 2002
    [7] Lazarsfeld P. Problems in methodology. Sociology Today: Problems and Prospects. New York: Basic Books, 1959
    [8] Hume D. An Enquiry Concerning Human Understanding, and Selections from A Treatise of Human Nature. Chicago: Open Court Publishing, 1912
    [9] Lewis D. Causation. J Philos, 1973, 70(17): 556 doi: 10.2307/2025310
    [10] Imbens G W, Rubin D B. Causal Inference for Statistics, Social, and Biomedical Sciences. New York: Cambridge University Press, 2015
    [11] Rubin D B. Bayesian inference for causal effects: The role of randomization. Ann Statist, 1978, 6(1): 34
    [12] Morgan S L, Winship C. Counterfactuals and Causal Inference Methods and Principles for Social Research. 2nd Ed. Cambridge: Cambridge University Press, 2014
    [13] Cochran W G, Chambers S P. The planning of observational studies of human populations. J Royal Stat Soc Ser A, 1965, 128(2): 234 doi: 10.2307/2344179
    [14] Hume D, Beauchamp T L. An Enquiry Concerning Human Understanding. Oxford: Clarendon Press, 1999
    [15] Mill J S. A System of Logic: in Collected Works of John Stuart Mill. Toronto: University of Toronto Press, 1973
    [16] Fisher R A. Statistical methods and scientific inference. J Institute Actuaries, 1957, 83(1): 64 doi: 10.1017/S002026810005126X
    [17] Neyman J S, Dabrowska D M, Speed T P. On the application of probability theory to agricultural experiments. essay on principles. section 9. Statist Sci, 1990, 5(4): 465
    [18] Rubin D B. Estimating causal effects of treatments in randomized and nonrandomized studies. J Educ Psychol, 1974, 66(5): 688 doi: 10.1037/h0037350
    [19] Miao W, Liu C C, Geng Z. Statistical approaches for causal inference. Sci Sin (Math), 2018, 48(12): 1753 doi: 10.1360/N012018-00055

    苗旺, 劉春辰, 耿直. 因果推斷的統計方法. 中國科學:數學, 2018, 48(12):1753 doi: 10.1360/N012018-00055
    [20] Rubin D B. Statistics and causal inference: Comment ifs have causal answers. J Am Stat Assoc, 1986, 81(396): 961
    [21] Sinclair B, McConnell M, Green D P. Detecting spillover effects: Design and analysis of multilevel experiments. Am J Political Sci, 2012, 56(4): 1055 doi: 10.1111/j.1540-5907.2012.00592.x
    [22] Bickel P J, Hammel E A, O’Connell J W. Sex bias in graduate admissions: Data from Berkeley. Science, 1975, 187(4175): 398 doi: 10.1126/science.187.4175.398
    [23] Greenland S, Pearl J, Robins J M. Confounding and collapsibility in causal inference. Statist Sci, 1999, 14(1): 29
    [24] Cochran W G, Rubin D B. Controlling bias in observational studies: A review. Sankhyā:The Indian Journal of Statistics,Series A, 1973, 35(4): 417
    [25] Rosenbaum P R, Rubin D B. The central role of the propensity score in observational studies for causal effects. Biometrika, 1983, 70(1): 41 doi: 10.1093/biomet/70.1.41
    [26] Abadie A, Imbens G W. Matching on the estimated propensity score. Econometrica, 2016, 84(2): 781 doi: 10.3982/ECTA11293
    [27] Bahadori M T, Chalupka K, Choi E, et al. Causal regularization[J/OL]. ArXiv Preprint (2017-2-23) [2021-6-11].https://arxiv.org/abs/1702.02604
    [28] Lee B K, Lessler J, Stuart E A. Improving propensity score weighting using machine learning. Stat Med, 2010, 29(3): 337 doi: 10.1002/sim.3782
    [29] Rosenbaum P R. Model-based direct adjustment. J Am Stat Assoc, 1987, 82(398): 387 doi: 10.1080/01621459.1987.10478441
    [30] Imbens G W. Nonparametric estimation of average treatment effects under exogeneity: A review. Rev Econ Stat, 2004, 86(1): 4 doi: 10.1162/003465304323023651
    [31] Robins J M, Rotnitzky A, Zhao L P. Estimation of regression coefficients when some regressors are not always observed. J Am stat Assoc, 1994, 89(427): 846 doi: 10.1080/01621459.1994.10476818
    [32] Hullsiek K H, Louis T A. Propensity score modeling strategies for the causal analysis of observational data. Biostatistics, 2002, 3(2): 179 doi: 10.1093/biostatistics/3.2.179
    [33] Pearl J. Causality: Models, Reasoning, and Inference, 2nd Ed. New York: Cambridge University Press, 2009
    [34] Pearl J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. San Francisco: Morgan Kaufmann, 1988
    [35] Spiegelhalter D J, Dawid A P, Lauritzen S L, et al. Bayesian Analysis in Expert Systems. Statistical Science, 1993, 8(3): 219
    [36] Blyth C R. On Simpson’s paradox and the sure-thing principle. J Am Stat Assoc, 1972, 67(338): 364 doi: 10.1080/01621459.1972.10482387
    [37] Lauritzen S L, Spiegelhalter D J. Local computations with probabilities on graphical structures and their application to expert systems. J Royal Stat Soc:Ser B (Methodol), 1988, 50(2): 157
    [38] Pearl J. Causality. New York: Cambridge University Press, 2000
    [39] Pearl J. Causal diagrams for empirical research. Biometrika, 1995, 82(4): 702
    [40] Greenland S, Pearl J. Adjustments and their consequences—collapsibility analysis using graphical models. Int Stat Rev, 2011, 79(3): 401 doi: 10.1111/j.1751-5823.2011.00158.x
    [41] Greenland S, Pearl J, Robins J M. Causal diagrams for epidemiologic research. Epidemiol (Camb Mass), 1999, 10(1): 37 doi: 10.1097/00001648-199901000-00008
    [42] Zhao X L. Most Useful Science of Econometrics. Beijing: Peking University Press, 2017

    趙西亮. 基本有用的計量經濟學. 北京: 北京大學出版社, 2017
    [43] Shimizu S, Hoyer P O, Hyvarinen A, et al. A linear non-gaussian acyclic model for causal discovery. J Mach Learn Res, 2006, 7(4): 2003
    [44] Hoyer P O, Shimizu S, Kerminen A J, et al. Estimation of causal effects using linear non-Gaussian causal models with hidden variables. Int J Approx Reason, 2008, 49(2): 362 doi: 10.1016/j.ijar.2008.02.006
    [45] Cai R C, Qiao J, Zhang Z J, et al. Self: Structural equational embedded likelihood framework for causality discovery // The Thirty-Second AAAI Conference on Artificial Intelligence(AAAI-18). New Orleans, 2018: 1787
    [46] Mai G Z, Peng S G, Hong Y H, et al. Causation inference based on combining additive noise model and conditional independence. Appl Res Comput, 2019, 36(6): 1688

    麥桂珍, 彭世國, 洪英漢, 等. 混合加噪聲模型與條件獨立性檢測的因果方向推斷算法. 計算機應用研究, 2019, 36(6):1688
    [47] Fei N N, Yang Y L. Estimating linear causality in the presence of latent variables. Clust Comput, 2017, 20(2): 1025 doi: 10.1007/s10586-017-0824-5
    [48] He Y, Jia J, Yu B. Reversible MCMC on Markov equivalence classes of sparse directed ayclic graphs. Ann Statist, 2013, 41(4): 1742
    [49] Zhang H, Hao Z F, Cai R C, et al. High dimensional causality discovering based on mutual information. Appl Res Comput, 2015, 32(2): 382 doi: 10.3969/j.issn.1001-3695.2015.02.015

    張浩, 郝志峰, 蔡瑞初, 等. 基于互信息的適用于高維數據的因果推斷算法. 計算機應用研究, 2015, 32(2):382 doi: 10.3969/j.issn.1001-3695.2015.02.015
    [50] Qin Q L, Li Q, Yan X X, et al. A comparative study on the four causal diagram models for causal inference in observation study. Chin J Heal Stat, 2020, 37(4): 496

    覃青連, 李嶠, 顏星星, 等. 四種因果圖模型在觀察性研究因果推斷中的比較研究. 中國衛生統計, 2020, 37(4):496
    [51] Bareinboim E, Pearl J. Causal inference and the data-fusion problem. PNAS, 2016, 113(27): 7345 doi: 10.1073/pnas.1510507113
    [52] Abadie A, Cattaneo M D. Econometric methods for program evaluation. Annu Rev Econ, 2018, 10(1): 465 doi: 10.1146/annurev-economics-080217-053402
    [53] Wyss R, Ellis A R, Brookhart M A, et al. The role of prediction modeling in propensity score estimation: An evaluation of logistic regression, bCART, and the covariate-balancing propensity score. Am J Epidemiol, 2014, 180(6): 645 doi: 10.1093/aje/kwu181
    [54] Imai K, Ratkovic M. Covariate balancing propensity score. J R Stat Soc B, 2014, 76(1): 243 doi: 10.1111/rssb.12027
    [55] Bloniarz A, Liu H Z, Zhang C H, et al. Lasso adjustments of treatment effect in randomized experiments. PNAS, 2016, 113(27): 7383 doi: 10.1073/pnas.1510506113
    [56] Choudhury P, Allen R, Endres M. Developing theory using machine learning methods. SSRN Journal, 2018: 3251077
    [57] Zivich P N, Breskin A. Machine learning for causal inference: on the use of cross-fit estimators. Epidemiology, 2021, 32(3): 393 doi: 10.1097/EDE.0000000000001332
    [58] Wang T, Huang J Q, Zhang H W, et al. Visual commonsense representation learning via causal inference // 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Seattle, 2020: 1547
    [59] Chen P, Li Q, Zhang D Z, et al. A survey of multimodal machine learning. Chin J Eng, 2020, 42(5): 557

    陳鵬, 李擎, 張德政, 等. 多模態學習方法綜述. 工程科學學報, 2020, 42(5):557
    [60] Niu Y, Tang K H, Zhang H W, et al. Counterfactual VQA: A cause-effect look at language bias // 2021 IEEE/CVF Computer Vision and Pattern Recognition. Virtual, 2021: 12695
    [61] Tang K H, Huang J Q, Zhang H W. Long-tailed classification by keeping the good and removing the bad momentum causal effect // Neural Information Processing Systems. Vancouver, 2020: 12991
    [62] Zhang D, Zhang H W, Tang J H, et al. Causal intervention for weakly-supervised semantic segmentation // Neural Information Processing Systems. Vancouver, 2020: 12547
    [63] Yue Z Q, Wang T, Zhang H W, et al. Counterfactual zero-shot and open-set visual recognition [J/OL]. arXiv preprint (2021-3-1) [2021-6-11].https://arxiv.org/abs/2103.00887v1
    [64] Yang X, Zhang H W, Qi G J, et al. Causal attention for vision-language tasks // Computer Vision and Pattern Recognition. Virtual, 2021: 9842
    [65] Bonner S, Vasile F. Causal embeddings for recommendation// Proceedings of the 12th ACM Conference on Recommender Systems. Vancouver, 2018: 104
    [66] Xu S Y, Li Y Q, Liu S C, et al. Learning post-hoc causal explanations for recommendation [J/OL]. arXiv preprint (2021-2-23) [2021-6-11].https://arxiv.org/abs/2006.16977
  • 加載中
計量
  • 文章訪問數:  2544
  • HTML全文瀏覽量:  402
  • PDF下載量:  547
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-07-04
  • 網絡出版日期:  2021-10-19
  • 刊出日期:  2022-07-01

目錄

    /

    返回文章
    返回
    久色视频