[1] |
Sabine G H, Russell B. A history of western philosophy and its connection with political and social circumstances from the earliest times to the present day. Am Hist Rev, 1946, 51(3): 485 doi: 10.2307/1840112
|
[2] |
Zhang D S, Sun G J. On the methodological characteristic and value of mill’s five canons. J Central China Norm Univ (Humanit Soc Sci), 2001, 40(6): 19張大松, 孫國江. 論穆勒五法的方法論特征與價值. 華中師范大學學報(人文社會科學版), 2001, 40(6):19
|
[3] |
Ying Q, Xu D S. Hume and the birth of analytical action philosophy—from the point of “causal explanation”. Tianjin Soc Sci, 2021, 12(2): 57應奇, 徐東舜. 休謨與分析性行動哲學的誕生—從“因果解釋”視角看. 天津社會科學, 2021, 12(2):57
|
[4] |
Granger C W J. Investigating causal relations by econometric models and cross-spectral methods. Econometrica, 1969, 37(3): 424 doi: 10.2307/1912791
|
[5] |
Heckman J J. Econometric causality. Int Statistical Rev, 2008, 76(1): 1 doi: 10.1111/j.1751-5823.2007.00024.x
|
[6] |
Cook T D, Campbell D, Shadish W. Experimental and Quasi-experimental Designs for Generalized Causal Inference. Boston: Houghton Mifflin, 2002
|
[7] |
Lazarsfeld P. Problems in methodology. Sociology Today: Problems and Prospects. New York: Basic Books, 1959
|
[8] |
Hume D. An Enquiry Concerning Human Understanding, and Selections from A Treatise of Human Nature. Chicago: Open Court Publishing, 1912
|
[9] |
Lewis D. Causation. J Philos, 1973, 70(17): 556 doi: 10.2307/2025310
|
[10] |
Imbens G W, Rubin D B. Causal Inference for Statistics, Social, and Biomedical Sciences. New York: Cambridge University Press, 2015
|
[11] |
Rubin D B. Bayesian inference for causal effects: The role of randomization. Ann Statist, 1978, 6(1): 34
|
[12] |
Morgan S L, Winship C. Counterfactuals and Causal Inference Methods and Principles for Social Research. 2nd Ed. Cambridge: Cambridge University Press, 2014
|
[13] |
Cochran W G, Chambers S P. The planning of observational studies of human populations. J Royal Stat Soc Ser A, 1965, 128(2): 234 doi: 10.2307/2344179
|
[14] |
Hume D, Beauchamp T L. An Enquiry Concerning Human Understanding. Oxford: Clarendon Press, 1999
|
[15] |
Mill J S. A System of Logic: in Collected Works of John Stuart Mill. Toronto: University of Toronto Press, 1973
|
[16] |
Fisher R A. Statistical methods and scientific inference. J Institute Actuaries, 1957, 83(1): 64 doi: 10.1017/S002026810005126X
|
[17] |
Neyman J S, Dabrowska D M, Speed T P. On the application of probability theory to agricultural experiments. essay on principles. section 9. Statist Sci, 1990, 5(4): 465
|
[18] |
Rubin D B. Estimating causal effects of treatments in randomized and nonrandomized studies. J Educ Psychol, 1974, 66(5): 688 doi: 10.1037/h0037350
|
[19] |
Miao W, Liu C C, Geng Z. Statistical approaches for causal inference. Sci Sin (Math), 2018, 48(12): 1753 doi: 10.1360/N012018-00055苗旺, 劉春辰, 耿直. 因果推斷的統計方法. 中國科學:數學, 2018, 48(12):1753 doi: 10.1360/N012018-00055
|
[20] |
Rubin D B. Statistics and causal inference: Comment ifs have causal answers. J Am Stat Assoc, 1986, 81(396): 961
|
[21] |
Sinclair B, McConnell M, Green D P. Detecting spillover effects: Design and analysis of multilevel experiments. Am J Political Sci, 2012, 56(4): 1055 doi: 10.1111/j.1540-5907.2012.00592.x
|
[22] |
Bickel P J, Hammel E A, O’Connell J W. Sex bias in graduate admissions: Data from Berkeley. Science, 1975, 187(4175): 398 doi: 10.1126/science.187.4175.398
|
[23] |
Greenland S, Pearl J, Robins J M. Confounding and collapsibility in causal inference. Statist Sci, 1999, 14(1): 29
|
[24] |
Cochran W G, Rubin D B. Controlling bias in observational studies: A review. Sankhyā:The Indian Journal of Statistics,Series A, 1973, 35(4): 417
|
[25] |
Rosenbaum P R, Rubin D B. The central role of the propensity score in observational studies for causal effects. Biometrika, 1983, 70(1): 41 doi: 10.1093/biomet/70.1.41
|
[26] |
Abadie A, Imbens G W. Matching on the estimated propensity score. Econometrica, 2016, 84(2): 781 doi: 10.3982/ECTA11293
|
[27] |
Bahadori M T, Chalupka K, Choi E, et al. Causal regularization[J/OL]. ArXiv Preprint (2017-2-23) [2021-6-11].https://arxiv.org/abs/1702.02604
|
[28] |
Lee B K, Lessler J, Stuart E A. Improving propensity score weighting using machine learning. Stat Med, 2010, 29(3): 337 doi: 10.1002/sim.3782
|
[29] |
Rosenbaum P R. Model-based direct adjustment. J Am Stat Assoc, 1987, 82(398): 387 doi: 10.1080/01621459.1987.10478441
|
[30] |
Imbens G W. Nonparametric estimation of average treatment effects under exogeneity: A review. Rev Econ Stat, 2004, 86(1): 4 doi: 10.1162/003465304323023651
|
[31] |
Robins J M, Rotnitzky A, Zhao L P. Estimation of regression coefficients when some regressors are not always observed. J Am stat Assoc, 1994, 89(427): 846 doi: 10.1080/01621459.1994.10476818
|
[32] |
Hullsiek K H, Louis T A. Propensity score modeling strategies for the causal analysis of observational data. Biostatistics, 2002, 3(2): 179 doi: 10.1093/biostatistics/3.2.179
|
[33] |
Pearl J. Causality: Models, Reasoning, and Inference, 2nd Ed. New York: Cambridge University Press, 2009
|
[34] |
Pearl J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. San Francisco: Morgan Kaufmann, 1988
|
[35] |
Spiegelhalter D J, Dawid A P, Lauritzen S L, et al. Bayesian Analysis in Expert Systems. Statistical Science, 1993, 8(3): 219
|
[36] |
Blyth C R. On Simpson’s paradox and the sure-thing principle. J Am Stat Assoc, 1972, 67(338): 364 doi: 10.1080/01621459.1972.10482387
|
[37] |
Lauritzen S L, Spiegelhalter D J. Local computations with probabilities on graphical structures and their application to expert systems. J Royal Stat Soc:Ser B (Methodol), 1988, 50(2): 157
|
[38] |
Pearl J. Causality. New York: Cambridge University Press, 2000
|
[39] |
Pearl J. Causal diagrams for empirical research. Biometrika, 1995, 82(4): 702
|
[40] |
Greenland S, Pearl J. Adjustments and their consequences—collapsibility analysis using graphical models. Int Stat Rev, 2011, 79(3): 401 doi: 10.1111/j.1751-5823.2011.00158.x
|
[41] |
Greenland S, Pearl J, Robins J M. Causal diagrams for epidemiologic research. Epidemiol (Camb Mass), 1999, 10(1): 37 doi: 10.1097/00001648-199901000-00008
|
[42] |
Zhao X L. Most Useful Science of Econometrics. Beijing: Peking University Press, 2017趙西亮. 基本有用的計量經濟學. 北京: 北京大學出版社, 2017
|
[43] |
Shimizu S, Hoyer P O, Hyvarinen A, et al. A linear non-gaussian acyclic model for causal discovery. J Mach Learn Res, 2006, 7(4): 2003
|
[44] |
Hoyer P O, Shimizu S, Kerminen A J, et al. Estimation of causal effects using linear non-Gaussian causal models with hidden variables. Int J Approx Reason, 2008, 49(2): 362 doi: 10.1016/j.ijar.2008.02.006
|
[45] |
Cai R C, Qiao J, Zhang Z J, et al. Self: Structural equational embedded likelihood framework for causality discovery // The Thirty-Second AAAI Conference on Artificial Intelligence(AAAI-18). New Orleans, 2018: 1787
|
[46] |
Mai G Z, Peng S G, Hong Y H, et al. Causation inference based on combining additive noise model and conditional independence. Appl Res Comput, 2019, 36(6): 1688麥桂珍, 彭世國, 洪英漢, 等. 混合加噪聲模型與條件獨立性檢測的因果方向推斷算法. 計算機應用研究, 2019, 36(6):1688
|
[47] |
Fei N N, Yang Y L. Estimating linear causality in the presence of latent variables. Clust Comput, 2017, 20(2): 1025 doi: 10.1007/s10586-017-0824-5
|
[48] |
He Y, Jia J, Yu B. Reversible MCMC on Markov equivalence classes of sparse directed ayclic graphs. Ann Statist, 2013, 41(4): 1742
|
[49] |
Zhang H, Hao Z F, Cai R C, et al. High dimensional causality discovering based on mutual information. Appl Res Comput, 2015, 32(2): 382 doi: 10.3969/j.issn.1001-3695.2015.02.015張浩, 郝志峰, 蔡瑞初, 等. 基于互信息的適用于高維數據的因果推斷算法. 計算機應用研究, 2015, 32(2):382 doi: 10.3969/j.issn.1001-3695.2015.02.015
|
[50] |
Qin Q L, Li Q, Yan X X, et al. A comparative study on the four causal diagram models for causal inference in observation study. Chin J Heal Stat, 2020, 37(4): 496覃青連, 李嶠, 顏星星, 等. 四種因果圖模型在觀察性研究因果推斷中的比較研究. 中國衛生統計, 2020, 37(4):496
|
[51] |
Bareinboim E, Pearl J. Causal inference and the data-fusion problem. PNAS, 2016, 113(27): 7345 doi: 10.1073/pnas.1510507113
|
[52] |
Abadie A, Cattaneo M D. Econometric methods for program evaluation. Annu Rev Econ, 2018, 10(1): 465 doi: 10.1146/annurev-economics-080217-053402
|
[53] |
Wyss R, Ellis A R, Brookhart M A, et al. The role of prediction modeling in propensity score estimation: An evaluation of logistic regression, bCART, and the covariate-balancing propensity score. Am J Epidemiol, 2014, 180(6): 645 doi: 10.1093/aje/kwu181
|
[54] |
Imai K, Ratkovic M. Covariate balancing propensity score. J R Stat Soc B, 2014, 76(1): 243 doi: 10.1111/rssb.12027
|
[55] |
Bloniarz A, Liu H Z, Zhang C H, et al. Lasso adjustments of treatment effect in randomized experiments. PNAS, 2016, 113(27): 7383 doi: 10.1073/pnas.1510506113
|
[56] |
Choudhury P, Allen R, Endres M. Developing theory using machine learning methods. SSRN Journal, 2018: 3251077
|
[57] |
Zivich P N, Breskin A. Machine learning for causal inference: on the use of cross-fit estimators. Epidemiology, 2021, 32(3): 393 doi: 10.1097/EDE.0000000000001332
|
[58] |
Wang T, Huang J Q, Zhang H W, et al. Visual commonsense representation learning via causal inference // 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Seattle, 2020: 1547
|
[59] |
Chen P, Li Q, Zhang D Z, et al. A survey of multimodal machine learning. Chin J Eng, 2020, 42(5): 557陳鵬, 李擎, 張德政, 等. 多模態學習方法綜述. 工程科學學報, 2020, 42(5):557
|
[60] |
Niu Y, Tang K H, Zhang H W, et al. Counterfactual VQA: A cause-effect look at language bias // 2021 IEEE/CVF Computer Vision and Pattern Recognition. Virtual, 2021: 12695
|
[61] |
Tang K H, Huang J Q, Zhang H W. Long-tailed classification by keeping the good and removing the bad momentum causal effect // Neural Information Processing Systems. Vancouver, 2020: 12991
|
[62] |
Zhang D, Zhang H W, Tang J H, et al. Causal intervention for weakly-supervised semantic segmentation // Neural Information Processing Systems. Vancouver, 2020: 12547
|
[63] |
Yue Z Q, Wang T, Zhang H W, et al. Counterfactual zero-shot and open-set visual recognition [J/OL]. arXiv preprint (2021-3-1) [2021-6-11].https://arxiv.org/abs/2103.00887v1
|
[64] |
Yang X, Zhang H W, Qi G J, et al. Causal attention for vision-language tasks // Computer Vision and Pattern Recognition. Virtual, 2021: 9842
|
[65] |
Bonner S, Vasile F. Causal embeddings for recommendation// Proceedings of the 12th ACM Conference on Recommender Systems. Vancouver, 2018: 104
|
[66] |
Xu S Y, Li Y Q, Liu S C, et al. Learning post-hoc causal explanations for recommendation [J/OL]. arXiv preprint (2021-2-23) [2021-6-11].https://arxiv.org/abs/2006.16977
|