<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

二維過渡金屬碳化物/碳氮化物(MXene)的穩定性及改進方法

鄭子祥 王恩會 侯新梅 楊濤

鄭子祥, 王恩會, 侯新梅, 楊濤. 二維過渡金屬碳化物/碳氮化物(MXene)的穩定性及改進方法[J]. 工程科學學報, 2022, 44(11): 1881-1896. doi: 10.13374/j.issn2095-9389.2021.06.16.008
引用本文: 鄭子祥, 王恩會, 侯新梅, 楊濤. 二維過渡金屬碳化物/碳氮化物(MXene)的穩定性及改進方法[J]. 工程科學學報, 2022, 44(11): 1881-1896. doi: 10.13374/j.issn2095-9389.2021.06.16.008
ZHENG Zi-xiang, WANG En-hui, HOU Xin-mei, YANG Tao. Stability and improvement of two-dimensional transition metal carbides and/or carbonitrides (MXene)[J]. Chinese Journal of Engineering, 2022, 44(11): 1881-1896. doi: 10.13374/j.issn2095-9389.2021.06.16.008
Citation: ZHENG Zi-xiang, WANG En-hui, HOU Xin-mei, YANG Tao. Stability and improvement of two-dimensional transition metal carbides and/or carbonitrides (MXene)[J]. Chinese Journal of Engineering, 2022, 44(11): 1881-1896. doi: 10.13374/j.issn2095-9389.2021.06.16.008

二維過渡金屬碳化物/碳氮化物(MXene)的穩定性及改進方法

doi: 10.13374/j.issn2095-9389.2021.06.16.008
基金項目: 國家自然科學基金資助項目(52025041, 51902020, 51974021, 51904021);中央高校基本科研業務費資助項目(FRF-TP-18-045A1)
詳細信息
    通訊作者:

    E-mail: yangtaoustb@ustb.edu.cn

  • 中圖分類號: TQ134.1+1

Stability and improvement of two-dimensional transition metal carbides and/or carbonitrides (MXene)

More Information
  • 摘要: 二維(2D)過渡金屬碳化物/碳氮化物(Mxene)材料,因其良好的親水性、導電性、柔韌性以及高贗電容等特性,在儲能、海水淡化、催化、電磁干擾屏蔽、透明導電薄膜等領域有著巨大的應用潛力。然而,由于MXene材料中活性過渡金屬、表面官能團以及結構缺陷的存在,使其在無保護的環境中(含有水、氧等)很容易被氧化,導致穩定性較差。MXene材料的氧化破壞了其片狀結構,降低了其電導率,限制了其更廣泛的應用。本文簡要介紹了MXene的結構和合成方法;綜述了MXene在不同條件下不穩定的機理,即表面官能團和周圍介質發生氧化反應;并從儲存條件、合成方法、氣氛熱處理、表面電性修飾、摻雜等方面討論了提高MXene穩定性的方法。

     

  • 圖  1  MXene合成從2011年到2019年發展的時間線

    Figure  1.  Timeline of MXene: a journey from 2011 to 2019

    圖  2  (a)Ti3C2Tx氧化過程,其中碳在內部電場的正電側被氧化,而Ti離子在負電側被氧化,電子向凸面位置的快速傳遞和Ti離子的緩慢擴散促進了內部電場的形成[30];(b)氧化機制示意圖,其中頂部和底部的Ti層首先被氧化形成非常薄的銳鈦礦納米顆粒,然后Ti從中間層擴散到表層,促進完整的3D納米顆粒生長[31]

    Figure  2.  (a) Illustration of Ti3C2Tx oxidation with carbon and Ti-ions being oxidized at the positive and negative sides of the internal electric field, respectively. Fast electron transport toward a convex location and slow diffusion of Ti-ions enable the internal electric field formation[30]; (b) oxidation mechanisms, wherein the top and bottom Ti layers are first oxidized to form very thin anatase nanoparticles, followed by Ti diffusion from the middle layer to the complete growth of 3D nanoparticles[31]

    圖  3  (a)新制Ti3C2Tx溶液和在室溫空氣環境中保存(b)7 d和(c)30 d的TEM圖像; (d~f)分別為(a~c)的高分辨率TEM圖像; (d)中插入的是其對應的SAED圖形,(e)和(f)中插入的是對應的FFT圖像[35]

    Figure  3.  TEM images of (a) MXene sheets from fresh Ti3C2Tx solution and aged solutions in Air-RT for (b) 7 days and (c) 30 days, respectively; (d–f) high-resolution TEM images in panels (a–c), respectively; the inset in panel (d) is the corresponding SAED pattern, and those in panels (e) and (f) are the corresponding FFT patterns[35]

    圖  4  (a)HF?Ti3C2Tx的SEM圖像[22]; LiF與MAX相的摩爾比為5∶1合成的MXene的(b)SEM圖像和(c)TEM圖像[27]

    Figure  4.  SEM image of (a) HF?Ti3C2Tx MXene flakes[22]; (b) SEM image and (c) TEM image of the synthesized MXene with the molar ratio of LiF to MAX phase of 5∶1[27]

    圖  5  (a)Ti3C2T2中T官能團不同位置的側視圖(兩種位置分別命名為C1、C2);(b)三種不同Ti3C2T2的穩定構型(C1、C2、C12)[41]

    Figure  5.  (a) Side view of a Ti3C2T2 single sheet with two T surface group locations (labeled C1 and C2) and (b) the three most stable configurations (C1, C2, and C12) corresponding to a multilayered Ti3C2T2 system[41]

    圖  6  MXene水溶液分散體(0.5 mg·mL?1)在(a)室溫下(~25 oC), (b) ?20 °C儲存的照片; (c)新制Mxene, (d)在–20 oC下保存650 d的Mxene, 以及(e)在室溫下保存2 d的MXene的TEM圖像[43]

    Figure  6.  Photos of the aqueous MXene dispersion (0.5 mg·mL?1) stored at (a) room temperature (RT, ~25 oC) and (b) –20°C; TEM images of (c) fresh MXene, (d) MXene stored at ?20 oC for 650 days, and (e) MXene stored at room temperature for two days[43]

    圖  7  (a)Ti3C2Tx薄膜經真空抽濾后,在不同溫度和濕度下儲存8周后的歸一化電阻; (b)MXene溶液經真空過濾后在D@?80, D@?18, D@5和E@5條件下存儲5周后獲得的Ti3C2Tx薄膜光學圖像[38]

    Figure  7.  (a) Normalized resistances of various Ti3C2Tx MXene films obtained with vacuum filtration after storage for up to eight weeks under various temperatures and humidities; (b) optical images of Ti3C2Tx films obtained from MXene solutions with vacuum filtration after five weeks of storage in D@?80, D@?18, D@5, and E@5[38]

    圖  8  (a)d-Ti2CTx在Ar-LT中儲存12 h后的TEM圖像; (b)Ti3C2Tx膠體在不同環境下的穩定性曲線(實線是根據經驗方程A = Aunre + Aree?t/τ擬合的結果)[43]   

    Figure  8.  (a) TEM image of d-Ti2CTx stored in Ar-LT for 12 h; (b) stability of colloidal Ti3C2Tx in different environments(the dotted lines are the fitting results according to the empirical equation A = Aunre + Aree?t/τ) [43]

    圖  9  (a)MILD-Ti3C2Tx的SEM圖像[22];使用合成路線2制備的Ti3C2Tx薄片的(b)SEM圖像和(c)TEM圖像[27]

    Figure  9.  (a)SEM image of MILD-Ti3C2Tx[22]; (b) SEM image and (c) TEM image of Ti3C2Tx flakes produced using route 2[27]

    圖  10  (a)由不同儲存時間溶液制成的Al?Ti3C2Tx薄膜的導電性; (b)由不同儲存時間溶液制成的薄膜的拉曼光譜; (c)新制的Al?Ti3C2Tx薄片和(d)儲存10個月后溶液中的Al?Ti3C2Tx薄片的TEM圖像(紅色圓圈表示薄片中所有可觀測到的孔洞)[45]

    Figure  10.  (a) Electronic conductivity of freestanding Al?Ti3C2Tx films made from solutions stored for different periods; (b) Raman spectra of films made from solutions stored for different periods; TEM images of a fresh Al?Ti3C2Tx flake (c) and an Al?Ti3C2Tx flake from a 10-month-old solution (d) (the red circles mark all the observable pinholes in the flake)[45]

    圖  11  (a)Ti3C2薄膜在氫氣退火前后,在100%相對濕度和70 °C下進行氧化穩定性試驗時,薄片電阻的隨時間變化的曲線; (b)氧化前和氧化1 d后氫退火樣品(900 °C)的XRD譜圖; (c)氫退火后的樣品和(d)普通樣品在70 °C和100% RH下保存1 d后的SEM圖像[46]

    Figure  11.  (a) Time evolution of the sheet resistances of Ti3C2 MXene thin films subjected to oxidation stability tests in 100% relative humidity and at 70 °C, before and after the films were annealed under hydrogen; (b) XRD patterns of an as-prepared sample and a hydrogen-annealed sample (900 °C) before and after oxidation for 1 day; SEM images of (c) a hydrogen-annealed and (d) an as-prepared sample after maintaining at 70 °C and 100% RH for 1 day[46]

    圖  12  (a)Ti3C2Tx薄膜制備原理圖; (b)Ti3AlC2、退火前的薄膜,退火后的薄膜在水中儲存10個月后的XRD譜圖; (c)在水中貯存10個月的退火MXene膜的光學圖像[47]

    Figure  12.  (a) Schematic of the Ti3C2Tx film preparation; (b) X-ray diffraction (XRD) spectra of Ti3AlC2 MAX phase particles, the as-prepared film made by nanosheets prior to annealing, and annealed MXene films subject to 10-month storage in water; (c) optical images of annealed MXene films subject to 10-month storage in water[47]

    圖  13  (a) 微流控裝置示意圖; (b)MXene膜72 h后在去離子水中保持穩定,而GO膜則不穩定; (c) MXene膜在浸泡前(dry)、浸泡后(wet)和再干燥后的XRD圖譜,表明MXene膜在浸泡過程中很大程度上保留了層狀結構[48]

    Figure  13.  (a) Schematic illustration of the nanofluidic device; (b) neat MXene membrane remained stable in deionized (DI) water after 72 h. Conversely, the neat graphene oxide (GO) membrane was not stable; (c) XRD pattern of the MXene membrane before immersion (dry), after immersion (wet), and after redrying, suggesting that its laminar structure is largely retained during these processes[48]

    圖  14  (a)加載聚陰離子封裝MXene薄片邊界的原理示意圖; (b)用于EELS分析的薄片的環形暗場-掃描透射電子顯微鏡(STEM-ADF)圖像; (c, d) P、Ti和C的EELS信號沿著圖(b)中c和d處標記箭頭從真空走向MXene薄片邊緣的歸一化強度(箭頭有一個從藍色到紅色的漸變,其中藍色代表真空區域,紅色代表MXene薄片區域,箭頭標記對應著從那里獲得信號的位置)[49]

    Figure  14.  (a) The schematic of edge capping of MXene sheets by polyanions; (b) STEM-ADF image of the flake used for EELS analysis; (c, d) normalized intensities of P, Ti, and C EELS signals transitioning from vacuum toward the edge of the MXene flake along the marked arrows c and d (The arrow has a gradient from blue to red, where the blue color represents the area over vacuum and red, the area over the MXene flake. The arrow marks correspond to the positions from where the signal was obtained. Similar arrows are marked on the STEM-ADF image shown in (b) for easy comparison)[49]

    圖  15  (a)聚多巴胺聚合和結合的原理示意圖; (b)不同MXene樣品在空氣中加熱,電阻隨時間變化的曲線(插圖為聚多巴胺阻止氧氣接觸MXene的示意圖)[50]

    Figure  15.  (a) Proposed polymerization and binding mechanism; (b) curves of resistance over time of different MXene samples heated in air (illustrated with polydopamine blocking oxygen contact with MXene)[50]

    圖  16  (a)鍍納米碳穩定Ti3C2Tx的合成示意圖,它包括葡萄糖分子通過氫鍵在MXene表面的優先吸附,葡萄糖與水熱碳(R =烷基、乙烯基、環烷基或芳基)的原位聚合,以及隨后的高溫熱碳化; 鍍納米碳Ti3C2Tx MXene的(b)SEM圖像和(c)TEM圖像[52]

    Figure  16.  (a) Schematic illustration of the strategy for stabilizing Ti3C2Tx MXene by carbon nanoplating, it involves the preferential adsorption of glucose molecules on the MXene surface via hydrogen bonding, the in-situ polymerization of glucose to hydrothermal carbon (R = alkyl, vinyl, cycloalkyl, or aryl groups), and subsequent thermal carbonization at high temperature; (b) SEM image and (c) TEM image of carbon-nanoplated Ti3C2Tx MXene [52]

    圖  17  (a)不同方法合成SnO2/MXene的合成示意圖; SnO2/MXene的(b)低分辨TEM圖像和(c)傅里葉濾波高分辨率RGB圖像((b)中插圖為其對應的SAED圖像)[53]

    Figure  17.  (a) Schematic illustration of the various methods used for SnO2 deposition on Ti3C2 MXene sheets; (b) TEM image and (c) Fourier-filtered high-resolution RGB image of SnO2/MXene (the inset of (b) is the corresponding SAED pattern of SnO2/Mxene)[53]

    圖  18  (a)褶皺N?Ti3C2Tx的合成示意圖; 褶皺N?Ti3C2Tx的(b)低倍和(c) 高倍SEM圖像; (d)摻雜N元素和未摻雜的Ti3C2Tx 1000次循環的循環性能[56]     

    Figure  18.  (a) Schematic illustration of the synthesis of crumpled N?Ti3C2Tx; (b) low magnifications and (c) high magnifications SEM images of N?Ti3C2Tx; (d) cycling performances of crumpled N?Ti3C2Tx/S electrodes and mixed-Ti3C2Tx/S electrodes for 1000 cycles[56]

    久色视频
  • [1] Bolotin K I, Sikes K J, Jiang Z, et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun, 2008, 146(9-10): 351 doi: 10.1016/j.ssc.2008.02.024
    [2] Novoselov K S, Fal’ko V I, Colombo L, et al. A roadmap for graphene. Nature, 2012, 490: 192 doi: 10.1038/nature11458
    [3] Naguib M, Kurtoglu M, Presser V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater, 2011, 23(37): 4248 doi: 10.1002/adma.201102306
    [4] Anasori B, Lukatskaya M R, Gogotsi Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat Rev Mater, 2017, 2: 16098 doi: 10.1038/natrevmats.2016.98
    [5] Naguib M, Mashtalir O, Carle J, et al. Two-dimensional transition metal carbides. ACS Nano, 2013, 6(2): 1322
    [6] Ghidiu M, Naguib M, Shi C, et al. Synthesis and characterization of two-dimensional Nb4C3 (MXene). Chem Commun, 2014, 50(67): 9517 doi: 10.1039/C4CC03366C
    [7] Anasori B, Xie Y, Beidaghi M, et al. Two-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano, 2015, 9(10): 9507 doi: 10.1021/acsnano.5b03591
    [8] Zhou J, Gao S H, Guo Z L, et al. Ti-enhanced exfoliation of V2AlC into V2C MXene for lithium-ion battery anodes. Ceram Int, 2017, 43(14): 11450 doi: 10.1016/j.ceramint.2017.06.016
    [9] Sun Z M, Music D, Ahuja R, et al. Bonding and classification of nanolayered ternary carbides. Phys Rev B Condens Matter Mater Phys, 2004, 70(9): 092102 doi: 10.1103/PhysRevB.70.092102
    [10] Urbankowski P, Anasori B, Makaryan T, et al. Synthesis of two-dimensional titanium nitride Ti4N3 (MXene). Nanoscale, 2016, 8(22): 11385 doi: 10.1039/C6NR02253G
    [11] Dillon A D, Ghidiu M J, Krick A L, et al. Highly conductive optical quality solution-processed films of 2D titanium carbide. Adv Funct Mater, 2016, 26(23): 4162 doi: 10.1002/adfm.201600357
    [12] Sang X H, Xie Y, Lin M W, et al. Atomic defects in monolayer titanium carbide (Ti3C2Tx) MXene. ACS Nano, 2016, 10(10): 9193 doi: 10.1021/acsnano.6b05240
    [13] Lukatskaya M R, Mashtalir O, Ren C E, et al. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science, 2013, 341(6153): 1502 doi: 10.1126/science.1241488
    [14] Ghidiu M, Lukatskaya M R, Zhao M Q, et al. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature, 2014, 516: 78 doi: 10.1038/nature13970
    [15] Wu W, Wang E H, Yang T, et al. Electrochemical performance of self-assembled two-dimensional Ti3C2Tx(MXene) thin films. Chin J Eng, 2021, 43(6): 808

    武偉, 王恩會, 楊濤, 等. 自支撐二維Ti3C2Tx(MXene)薄膜電化學性能. 工程科學學報, 2021, 43(6):808
    [16] Liang X, Garsuch A, Nazar L F. Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries. Angewandte Chemie Int Ed, 2015, 54(13): 3907 doi: 10.1002/anie.201410174
    [17] Ren C E, Hatzell K B, Alhabeb M, et al. Charge- and size-selective ion sieving through Ti3C2Tx MXene membranes. J Phys Chem Lett, 2015, 6(20): 4026 doi: 10.1021/acs.jpclett.5b01895
    [18] Seh Z W, Fredrickson K D, Anasori B, et al. Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution. ACS Energy Lett, 2016, 1(3): 589 doi: 10.1021/acsenergylett.6b00247
    [19] Shahzad F, Alhabeb M, Hatter C B, et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science, 2016, 353(6304): 1137 doi: 10.1126/science.aag2421
    [20] Halim J, Lukatskaya M R, Cook K M, et al. Transparent conductive two-dimensional titanium carbide epitaxial thin films. Chem Mater, 2014, 26(7): 2374 doi: 10.1021/cm500641a
    [21] Hantanasirisakul K, Zhao M Q, Urbankowski P, et al. Fabrication of Ti3C2Tx MXene transparent thin films with tunable optoelectronic properties. Adv Electron Mater, 2016, 2(6): 1600050 doi: 10.1002/aelm.201600050
    [22] Alhabeb M, Maleski K, Anasori B, et al. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem Mater, 2017, 29(18): 7633 doi: 10.1021/acs.chemmater.7b02847
    [23] Zhang C F, McKeon L, Kremer M P, et al. Additive-free MXene inks and direct printing of micro-supercapacitors. Nat Commun, 2019, 10: 1795 doi: 10.1038/s41467-019-09398-1
    [24] Sun N, Zhu Q Z, Anasori B, et al. MXene-bonded flexible hard carbon film as anode for stable Na/K-ion storage. Adv Funct Mater, 2019, 29(51): 1906282 doi: 10.1002/adfm.201906282
    [25] Mashtalir O, Lukatskaya M R, Zhao M Q, et al. Amine-assisted delamination of Nb2C MXene for Li-ion energy storage devices. Adv Mater, 2015, 27(23): 3501 doi: 10.1002/adma.201500604
    [26] Mashtalir O, Naguib M, Mochalin V N, et al. Intercalation and delamination of layered carbides and carbonitrides. Nat Commun, 2013, 4: 1716 doi: 10.1038/ncomms2664
    [27] Lipatov A, Alhabeb M, Lukatskaya M R, et al. Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes. Adv Electron Mater, 2016, 2(12): 1600255 doi: 10.1002/aelm.201600255
    [28] Sun W, Shah S A, Chen Y, et al. Electrochemical etching of Ti2AlC to Ti2CTx (MXene) in low-concentration hydrochloric acid solution. J Mater Chem A, 2017, 5(41): 21663 doi: 10.1039/C7TA05574A
    [29] Li M, Lu J, Luo K, et al. Element replacement approach by reaction with Lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes. J Am Chem Soc, 2019, 141(11): 4730 doi: 10.1021/jacs.9b00574
    [30] Xia F J, Lao J C, Yu R H, et al. Ambient oxidation of Ti3C2 MXene initialized by atomic defects. Nanoscale, 2019, 11(48): 23330 doi: 10.1039/C9NR07236E
    [31] Naguib M, Mashtalir O, Lukatskaya M R, et al. One-step synthesis of nanocrystalline transition metal oxides on thin sheets of disordered graphitic carbon by oxidation of MXenes. Chem Commun, 2014, 50(56): 7420 doi: 10.1039/C4CC01646G
    [32] Ghassemi H, Harlow W, Mashtalir O, et al. In situ environmental transmission electron microscopy study of oxidation of two-dimensional Ti3C2 and formation of carbon-supported TiO2. J Mater Chem A, 2014, 2(35): 14339 doi: 10.1039/C4TA02583K
    [33] Narayanasamy M, Kirubasankar B, Shi M J, et al. Morphology restrained growth of V2O5 by the oxidation of V-MXenes as a fast diffusion controlled cathode material for aqueous zinc ion batteries. Chem Commun, 2020, 56(47): 6412 doi: 10.1039/D0CC01802C
    [34] Lotfi R, Naguib M, Yilmaz D E, et al. A comparative study on the oxidation of two-dimensional Ti3C2 MXene structures in different environments. J Mater Chem A, 2018, 6(26): 12733 doi: 10.1039/C8TA01468J
    [35] Zhao X F, Vashisth A, Prehn E, et al. Antioxidants unlock shelf-stable Ti3C2Tx (MXene) nanosheet dispersions. Matter, 2019, 1(2): 513 doi: 10.1016/j.matt.2019.05.020
    [36] Huang S H, Mochalin V N. Hydrolysis of 2D transition-metal carbides (MXenes) in colloidal solutions. Inorg Chem, 2019, 58(3): 1958 doi: 10.1021/acs.inorgchem.8b02890
    [37] Ahmed B, Anjum D H, Hedhili M N, et al. H2O2 assisted room temperature oxidation of Ti2C MXene for Li-ion battery anodes. Nanoscale, 2016, 8(14): 7580 doi: 10.1039/C6NR00002A
    [38] Chae Y, Kim S J, Cho S Y, et al. An investigation into the factors governing the oxidation of two-dimensional Ti3C2 MXene. Nanoscale, 2019, 11(17): 8387 doi: 10.1039/C9NR00084D
    [39] Tang J, Mathis T S, Kurra N, et al. Tuning the electrochemical performance of titanium carbide MXene by controllable in situ anodic oxidation. Angew Chem Int Ed, 2019, 58(49): 17849 doi: 10.1002/anie.201911604
    [40] Habib T, Zhao X, Shah S A, et al. Oxidation stability of Ti3C2Tx MXene nanosheets in solvents and composite films. Npj 2D Mater Appl, 2019, 3: 8 doi: 10.1038/s41699-019-0089-3
    [41] Peng J H, Chen X Z, Ong W J, et al. Surface and heterointerface engineering of 2D MXenes and their nanocomposites: Insights into electro- and photocatalysis. Chem, 2019, 5(1): 18 doi: 10.1016/j.chempr.2018.08.037
    [42] Mishra A, Srivastava P, Carreras A, et al. Atomistic origin of phase stability in oxygen-functionalized MXene: A comparative study. J Phys Chem C, 2017, 121(34): 18947 doi: 10.1021/acs.jpcc.7b06162
    [43] Zhang C J, Pinilla S, McEvoy N, et al. Oxidation stability of colloidal two-dimensional titanium carbides (MXenes). Chem Mater, 2017, 29(11): 4848 doi: 10.1021/acs.chemmater.7b00745
    [44] Feng A H, Yu Y, Jiang F, et al. Fabrication and thermal stability of NH4HF2-etched Ti3C2 MXene. Ceram Int, 2017, 43(8): 6322 doi: 10.1016/j.ceramint.2017.02.039
    [45] Mathis T S, Maleski K, Goad A, et al. Modified MAX phase synthesis for environmentally stable and highly conductive Ti3C2 MXene. ACS Nano, 2021, 15(4): 6420 doi: 10.1021/acsnano.0c08357
    [46] Lee Y, Kim S J, Kim Y J, et al. Oxidation-resistant titanium carbide MXene films. J Mater Chem A, 2020, 8(2): 573 doi: 10.1039/C9TA07036B
    [47] Zhao X F, Holta D E, Tan Z Y, et al. Annealed Ti3C2Tz MXene films for oxidation-resistant functional coatings. ACS Appl Nano Mater, 2020, 3(11): 10578 doi: 10.1021/acsanm.0c02473
    [48] Lao J C, Lv R J, Gao J, et al. Aqueous stable Ti3C2 MXene membrane with fast and photoswitchable nanofluidic transport. ACS Nano, 2018, 12(12): 12464 doi: 10.1021/acsnano.8b06708
    [49] Natu V, Hart J L, Sokol M, et al. Edge capping of 2D-MXene sheets with polyanionic salts to mitigate oxidation in aqueous colloidal suspensions. Angew Chem Int Ed, 2019, 58(36): 12655 doi: 10.1002/anie.201906138
    [50] Lee G S, Yun T, Kim H, et al. Mussel inspired highly aligned Ti3C2Tx MXene film with synergistic enhancement of mechanical strength and ambient stability. ACS Nano, 2020, 14(9): 11722 doi: 10.1021/acsnano.0c04411
    [51] Ding Y, Xiang S L, Zhi W Q, et al. Realizing ultra-stable Ti3C2-MXene in aqueous solution via surface grafting with ionomers. Soft Matter, 2021, 17(18): 4703 doi: 10.1039/D1SM00508A
    [52] Wu X H, Wang Z Y, Yu M Z, et al. Stabilizing the MXenes by carbon nanoplating for developing hierarchical nanohybrids with efficient lithium storage and hydrogen evolution capability. Adv Mater, 2017, 29(24): 1607017 doi: 10.1002/adma.201607017
    [53] Ahmed B, Anjum D H, Gogotsi Y, et al. Atomic layer deposition of SnO2 on MXene for Li-ion battery anodes. Nano Energy, 2017, 34: 249 doi: 10.1016/j.nanoen.2017.02.043
    [54] Yang T, Li Q, Chang X W, et al. Preparation of TiOxNy/TiN composites for photocatalytic hydrogen evolution under visible light. Phys Chem Chem Phys, 2015, 17(43): 28782 doi: 10.1039/C5CP04768D
    [55] Hou X M, Li Q, Zhang L Q, et al. Tunable preparation of chrysanthemum-like titanium nitride as flexible electrode materials for ultrafast-charging/discharging and excellent stable supercapacitors. J Power Sources, 2018, 396: 319 doi: 10.1016/j.jpowsour.2018.06.033
    [56] Bao W Z, Liu L, Wang C Y, et al. Facile synthesis of crumpled nitrogen-doped MXene nanosheets as a new sulfur host for lithium-sulfur batteries. Adv Energy Mater, 2018, 8(13): 1702485 doi: 10.1002/aenm.201702485
    [57] Jiang G Y, Zheng N, Chen X, et al. In-situ decoration of MOF-derived carbon on nitrogen-doped ultrathin MXene nanosheets to multifunctionalize separators for stable Li-S batteries. Chem Eng J, 2019, 373: 1309 doi: 10.1016/j.cej.2019.05.119
  • 加載中
圖(18)
計量
  • 文章訪問數:  2736
  • HTML全文瀏覽量:  561
  • PDF下載量:  340
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-06-16
  • 網絡出版日期:  2021-09-08
  • 刊出日期:  2022-11-01

目錄

    /

    返回文章
    返回