-
摘要: 徑向密封片作為轉子發動機最重要的密封部件,安裝在轉子的三個頂點,徑向密封片直接暴露在高溫高壓燃氣中,存在振拍、漏氣和磨損三大關鍵問題,這些問題會導致稱為“魔鬼爪痕”的缸體振紋的出現,這些問題直接影響轉子發動機的工作性能和使用壽命。NSU、Mazda等公司對徑向密封片的發展做出巨大,開發了多種型號徑向密封片并采用了多種材料。隨著材料技術的發展,一些新型材料與表面處理工藝可以應用于徑向密封片,例如:碳纖維、石墨烯等納米材料,激光表面處理、新型涂層等工藝。本文綜述了NSU、Mazda和Curtiss-Wright在徑向密封片上取得的成果,最后結合新型結構、新型材料與處理工藝,對徑向密封片的未來發展提出建議。Abstract: In 1954, Felix Wankel became the first in the world to successfully develop a rotary engine with the cooperation of the NSU. The invention of the rotary engine is a revolution in the structure of the internal combustion engine. The rotary engine exhibits advantages of simple structure, small and light, stable operation, and better high-speed performance. However, the development of the rotary engine is seriously restricted by its poor sealing problem. The apex seal is provided on each apex of the rotor to keep each working chamber gas-tight. Since it is directly exposed to high-pressure combustion gas and subjected to various kinds of restraint involved in the planetary motion, most efforts have been concentrated on the study of its performance and durability. The apex seal has three key problems: vibration, gas leakage, and wear. These problems will lead to the emergence of chatter marks that are called the nail marks of the devil. These problems directly affect the working performance and service life of the rotary engine. Mazda and NSU have made great contributions to the improvement of apex seals. Many types of apex seals have been developed, such as solid-type, split-type, cross-hollow, and three-piece. Many materials have been used as apex seals, such as alumetizing carbon, special cast iron, and fiber-reinforced ceramics. With the development of material technology, some new materials and treatment processing technology could be applied to the apex seal, e.g., laser surface treatment and new coatings. Carbon fibers, graphene, and nanometer materials could improve the wear resistance and mechanical property. This paper summarized the achievements of Mazda, NSU, and Curtiss-Wright. Finally, according to the new materials and treatment processing technology, the new structures and new materials for the apex seals were given in this paper. The trumpet-shaped notch structure, roller pin structure, cantilever flexure structure and multi apex sealing system can be used to improve the sealing performance of apex seals. Laser surface textured and new materials such as nano-ceramic and graphene are the breakthrough point to solve the sealing and wear problem of apex seals. This paper puts forward some suggestions for the future development of apex seals.
-
Key words:
- rotary engine /
- apex seals /
- sealing performance /
- structure design /
- material
-
表 1 徑向密封片材料的特性比較[31]
Table 1. Comparison of properties of radial seal materials
Apex seal material Hardness
(Hv)Bending strength/
MPaFracture toughness/
(MPa·m1/2)Thermal shock
resistance/°CDensity/
(g·cm?3)Carbon — 200–300 3.5 400–600 2.1 Fiber reinforced ceramics 1700 1200 6.0 >550 3.3 表 2 納米陶瓷材料力學性能的改善[70]
Table 2. Improvement of mechanical properties of nano-ceramic materials
Nano-ceramic materials
(matrix/nano-dispersed phase)Toughness/
(MPa·m1/2)Intensity/
MPaMaximum use temperature/℃ Al2O3/SiC 3.5–4.8 350–1520 800–1200 Al2O3/Si3N4 3.5–4.7 350–850 800–1200 MgO/SiC 1.2–4.5 340–700 600–1400 Si3N4/SiC 4.5–7.5 350–1550 1200–1400 -
參考文獻
[1] Liu J X. Numerical Modeling and Simulation for Small-Scale Rotary Engine. Beijing: Beijing Institute of Technology Press, 2020劉金祥著. 小型轉子發動機數值建模與仿真分析. 北京: 北京理工大學出版社, 2020 [2] Pei H L, Zhou N J, Gao H L. The characteristics and improvement of rotary engines. Intern Combust Engines, 2006(3): 1 doi: 10.3969/j.issn.1000-6494.2006.03.001裴海靈, 周乃君, 高宏亮. 三角轉子發動機的特點及其發展概況綜述. 內燃機, 2006(3):1 doi: 10.3969/j.issn.1000-6494.2006.03.001 [3] Xin D. Triangular Rotary Engine. Beijing: Science Press, 1981辛動. 三角轉子發動機. 北京: 科學出版社, 1981 [4] Amrouche F, Erickson P A, Varnhagen S, et al. An experimental analysis of hydrogen enrichment on combustion characteristics of a gasoline Wankel engine at full load and lean burn regime. Int J Hydrog Energy, 2018, 43(41): 19250 doi: 10.1016/j.ijhydene.2018.08.110 [5] Su T. Experimental Investigation on the Combustion and Emissions Characteristics of a Rotary Engine with Hydrogen Addition [Dissertation]. Beijing: Beijing University of Technology, 2019蘇騰. 摻氫轉子機燃燒與排放特性的試驗研究[學位論文]. 北京: 北京工業大學, 2019 [6] Yang J X. Numerical Investigation of Hydrogen Enrichment on Flow Field and Combustion Process in a Gasoline Wankel Rotary Engine [Dissertation]. Beijing: Beijing University of Technology, 2019楊金鑫. 摻氫對汽油轉子機流場及燃燒過程影響的數值模擬研究[學位論文]. 北京: 北京工業大學, 2019 [7] Chen W. Investigation on Combustion Characteristics and New Combustion Mode in a Diesel Wankel Engine [Dissertation]. Zhenjiang: Jiangsu University, 2019陳偉. 柴油汪克爾發動機燃燒特性及其新型燃燒模式研究[學位論文]. 鎮江: 江蘇大學, 2019 [8] Hubmann C, Beste F, Friedl H, et al. Single cylinder 25 kW range extender as alternative to a rotary engine maintaining high compactness and NVH performance [J/OL]. SAE International Online (2013-10-15) [2021-10-4].https://www.sae.org/publications/technical-papers/content/2013-32-9132/ [9] Noga M. Application of the internal combustion engine as a range-extender for electric vehicles. Combustion Engines, 2013: 52 [10] Spreitzer J, Zahradnik F, Geringer B. Implementation of a rotary engine (Wankel engine) in a CFD simulation tool with special emphasis on combustion and flow phenomena [J/OL]. SAE International Online (2015-4-14) [2021-10-4].https://saemobilus.sae.org/content/2015-01-0382/ [11] Lu F, Yu N B. Triangular Rotary Engine. Beijing: National Defense Industry Press, 1990盧法, 余乃彪. 三角轉子發動機. 北京: 國防工業出版社, 1990 [12] Keller H. Small wankel engines. SAE Transactions, 1968: 2339 [13] Shanghai Institute of Science and Technology Information. Foreign Triangle Piston Rotary Engine. Shanghai: Institute of Scientific and Technical Information of Shanghai Press, 1970上海科學技術情報所. 國外三角活塞旋轉式發動機. 上海: 上海科學技術情報所出版社, 1970 [14] Gupta A, Jayaram S. Wankel rotary engine's apex seal/trochoid wear chatter 'the devil's nail marks persist'. Int J Sci Res Publ (IJSRP) , 2019, 9(4): 8802 [15] Eberle M K, Klomp E D. An evaluation of the potential performance gain from leakage reduction in rotary engines. SAE Transactions, 1973: 454 [16] Wang Z K, Cheng Y, Zuo Z X. Research on gas leakage of small rotary engine // Proceedings of the 8th Annual Conference of Chinese Internal Combustion Engine Society. Shanghai, 2010: 333王志寬, 程穎, 左正興. 小型轉子發動機漏氣研究//中國內燃機學會第八屆學術年會論文集. 上海, 2010:333 [17] Ma C F, Wang D S, Ye J W, et al. Combustion and Heat Transfer of Rotary Engine. Beijing: China Communications Press, 1981馬重芳, 王達三, 葉經緯, 等. 旋轉活塞發動機的燃燒和傳熱. 北京: 人民交通出版社, 1981 [18] Hsu Y L. Analysis of the dynamic apex seal leakage of wankel engine [Dissertation]. Taichung: Chung Hsing University, 2015許右龍. 轉子引擎動態氣封洩漏分析[學位論文]. 臺中: 中興大學, 2015 [19] Nagao A, Ohzeki H, Niura Y. Present status and future view of rotary engines. Automot Engine Altern, 1987: 183 [20] Picard M, Tian T, Nishino T. Predicting gas leakage in the rotary engine—part I: Apex and corner seals. J Eng Gas Turbines Power, 2016, 138(6): 062503 doi: 10.1115/1.4031873 [21] Fan B W, Zeng Y H, Zhang Y Y, et al. Research on the hydrogen injection strategy of a direct injection natural gas/hydrogen rotary engine considering apex seal leakage. Int J Hydrog Energy, 2021, 46(13): 9234 doi: 10.1016/j.ijhydene.2020.12.214 [22] Fan B W, Wang Y G, Zhang Y Y, et al. Numerical investigation on the combustion performance of a natural gas/hydrogen dual fuel rotary engine under the action of apex seal leakage. Energy Fuels, 2021, 35(1): 770 doi: 10.1021/acs.energyfuels.0c03498 [23] Zhang Y Y. Numerical Simulation of Combustion Process of Side-Ported Natural Gas Hydrogen-Doped Rotary Engine [Dissertation]. Zhenjiang: Jiangsu University, 2020張耀元. 端面進氣天然氣摻氫轉子發動機燃燒過程的數值模擬研究[學位論文]. 鎮江: 江蘇大學, 2020 [24] Yamaoka K, Tado H. Improvements of the rotary engine with a charge cooled rotor [J/OL]. SAE International Online (1972-2-1) [2021-10-4].https://saemobilus.sae.org/content/720466/ [25] He Z L, Liu C J, Zhang M. Dynamic simulation of the wear of radial airproof patch of triangle rotor engine. J Chongqing Jiaotong Univ (Nat Sci) , 2008, 27(5): 835賀澤龍, 劉成俊, 張宓. 三角轉子發動機徑向密封片磨損的動態仿真. 重慶交通大學學報(自然科學版), 2008, 27(5):835 [26] He Z L, Liu C J, Zhang M, et al. The friction analysis of the radial airproof patch of the triangle rotor engine. J Chongqing Univ Sci Technol (Nat Sci Ed) , 2008, 10(3): 50賀澤龍, 劉成俊, 張宓, 等. 三角轉子發動機徑向密封片的摩擦學分析. 重慶科技學院學報(自然科學版), 2008, 10(3):50 [27] Jiang H Y, Zuo Z X, Liu J X. Wear simulation of apex seal in rotary engine under mixed lubrication //AIP Conference Proceedings, Busan, 2018: 03003.https://doi.org/10.1063/1.5039061 [28] Froede W G. The NSU-Wankel rotating combustion engine. SAE Transactions, 1961, 69: 179 [29] Froede W G. Recent developments in the Nsu wankel engine. Proceedings of the Institution of Mechanical Engineers:Automobile Division, 1965, 180(1): 279 doi: 10.1243/PIME_AUTO_1965_180_028_02 [30] Froede W G. The rotary engine of the NSU spider[J/OL]. SAE International Online (1965-2-1) [2021-10-4].https://www.sae.org/publications/technical-papers/content/650722/ [31] Shimizu R, Tadokoro T, Nakanishi T, et al. Mazda 4-rotor rotary engine for the Le Mans 24-hour endurance race [J/OL]. SAE International Online (1992-2-1) [2021-10-4]https://www.sae.org/publications/technical-papers/content/920309/ [32] Ohkubo M, Tashima S, Shimizu R, et al. Developed technologies of the new rotary engine (RENESIS) [J/OL]. SAE International Online (2004-3-8) [2021-10-4].https://saemobilus.sae.org/content/2004-01-1790/ [33] Fujimoto Y, Tatsutomi Y, Ozeki H, et al. Present and prospective technologies of rotary engine. SAE Transactions, 1987, 96(5): 87 [34] Jones C. The Curtiss-Wright rotating combustion engines today. SAE Transactions, 1965, 73: 127 [35] Jones C. A review of curtiss-wright rotary engine developments with respect to general aviation potential[J/OL]. SAE International Online (1979-2-1) [2021-10-4].https://saemobilus.sae.org/content/790621/ [36] Jones C. A survey of Curtiss-Wright's 1958-1971 rotating combustion engine technological developments[J/OL]. SAE International Online (1972-2-1) [2021-10-4].https://saemobilus.sae.org/content/720468/ [37] Jones C. Advanced rotary engine studies // General Aviation Propulsion Conference, Washington: 1980: 28 [38] Zhuzhou Cemented Carbide Factory. Steel Knot Cemented Carbide. Beijing: Metallurgical Industry Press, 1982株洲硬質合金廠. 鋼結硬質合金. 北京: 冶金工業出版社, 1982 [39] Revolutionary Committee of Changchun Automobile Research Institute. Summary Report of QY650 Rotary Piston Engine Development Stage. Changchun: Revolutionary Committee of Changchun Automobile Research Institute, 1971長春汽車研究所革命委員會. QY650型旋轉活塞發動機研制工作階段總結報告. 長春: 長春汽車研究所革命委員會, 1971 [40] Yamamoto K. Rotary piston engine. J Fuel Society Japan, 1965, 44(6): 449 doi: 10.3775/jie.44.6_449 [41] Prasse H F, McCormick H E, Anderson R D. A critical analysis of the rotary engine sealing problem[J/OL]. U. S. Department of Energy International Online (1986-1-1) [2021-10-4].https://www.osti.gov/biblio/5730971 [42] Muroki T. Recent technology development of high-powered rotary engine at Mazda. SAE transactions, 1984: 689 [43] Yamamoto K, Kuroda T. Toyo Kogyo’s research and development on major rotary engine problems. SAE Transactions, 1970, 79: 216 [44] Muroki T, Miyata J. Material technology development applied to rotary engine at Mazda[J/OL]. SAE International Online (1973-2-1) [2021-10-4].https://www.sae.org/publications/technical-papers/content/730118/ [45] Yamamoto K. Rotary Engine. Hiroshima: Sankaido Co. Ltd. , 1981 [46] Wang X M, Liu Y X, Dai L L, et al. Research on friction and wear behaviour of chilled iron. J Nanchang Univ (Eng Technol) , 2001, 23(3): 53汪先明, 劉燕霞, 戴莉莉, 等. 激冷鑄鐵摩擦磨損性能的研究. 南昌大學學報(工科版), 2001, 23(3):53 [47] Beijing Electron Tube Factory. Steel Bonded Alloy. Beijing: National Defense Industry Press, 1971北京電子管廠編. 鋼結合金. 北京: 國防工業出版社, 1971 [48] Zhou S Z. Hard Materials and Tools. Beijing: Metallurgical Industry Press, 2015周書助. 硬質材料與工具. 北京: 冶金工業出版社, 2015 [49] Ellis J L, Mal K. New developments in powder metal sealing elements. Wear, 1975, 32(3): 327 doi: 10.1016/0043-1648(75)90320-8 [50] Kamiya S, Shirasagi S. Suzuki production rotary engine, model RE-5 for powering motorcycles[J/OL]. SAE International Online (1977-2-1) [2021-10-4].https://www.sae.org/publications/technical-papers/content/770190/ [51] Guo R S, Cai S, Ji H M. et al. Engineering Structural Ceramics. Tianjin: Tianjin University Press, 2002郭瑞松, 蔡舒, 季惠明, 等. 工程結構陶瓷. 天津: 天津大學出版社, 2002 [52] Li Z Y. Improvement of cylinder radial sealing film in rotary engine. For Eng, 2011, 27(6): 48 doi: 10.3969/j.issn.1001-005X.2011.06.013李芝勇. 對轉子發動機氣缸徑向密封片的改進. 森林工程, 2011, 27(6):48 doi: 10.3969/j.issn.1001-005X.2011.06.013 [53] Rose S W, Yang D C H. Wide and multiple apex seals for the rotary engine. Mech Mach Theory, 2014, 74: 202 doi: 10.1016/j.mechmachtheory.2013.12.011 [54] Martinez F C, Knobloch A J, Pisano A P. Apex seal design for the MEMS rotary engine power system // Proceedings of ASME 2003 International Mechanical Engineering Congress and Exposition. Washington, 2008: 157 [55] Heppner J D, Walther D C, Pisano A P. Leakage flow analysis for a MEMS rotary engine // Proceedings of ASME 2003 International Mechanical Engineering Congress and Exposition. Washington, 2008: 327 [56] Zhang S, Liu J X, Zhou Y. Effect of DLC coating on the friction power loss between apex seal and housing in small Wankel rotary engine. Tribol Int, 2019, 134: 365 doi: 10.1016/j.triboint.2019.02.005 [57] Etsion I, Sher E. Improving fuel efficiency with laser surface textured piston rings. Tribol Int, 2009, 42(4): 542 doi: 10.1016/j.triboint.2008.02.015 [58] Morris N, Hart G, Wong Y J, et al. Laser surface texturing of Wankel engine apex seals. Surf Topogr:Metrol Prop, 2020, 8(3): 034001 doi: 10.1088/2051-672X/ababf5 [59] Warren S, Yang D C H. Design of rotary engines from the apex seal profile (Abbr. : Rotary engine design by apex seal). Mech Mach Theory, 2013, 64: 200 [60] Dou P F. Research progress of silicon nitride ceramics toughened by carbon materials. Ceramics, 2019(6): 54 doi: 10.3969/j.issn.1002-2872.2019.06.009豆鵬飛. 碳材料增韌氮化硅陶瓷研究進展. 陶瓷, 2019(6):54 doi: 10.3969/j.issn.1002-2872.2019.06.009 [61] Hao C Y, Yang M H, Yang H T, et al. Discussion on toughened silicon nitride ceramic composites by carbon nanotubes. Ceramics, 2005(2): 21 doi: 10.3969/j.issn.1002-2872.2005.02.005郝春云, 楊明輝, 楊海濤, 等. 碳納米管增韌氮化硅陶瓷復合材料的探討. 陶瓷, 2005(2):21 doi: 10.3969/j.issn.1002-2872.2005.02.005 [62] Guo Z, Xin Q, Zang Y, et al. Effects of graphene oxide doping content and pH on energy storage performance of graphene aerogel. Chin J Eng, 2021, 43(2): 239郭志成, 辛青, 臧月, 等. 氧化石墨烯摻雜量與pH值對石墨烯氣凝膠儲能性能的影響. 工程科學學報, 2021, 43(2):239 [63] Lee X J, Hiew B Y Z, Lai K C, et al. Review on graphene and its derivatives: Synthesis methods and potential industrial implementation. J Taiwan Inst Chem Eng, 2019, 98: 163 doi: 10.1016/j.jtice.2018.10.028 [64] Pu J B, Wang L P, Xue Q J. Progress of tribology of graphene and graphene-based composite lubricating materials. Tribology, 2014, 34(1): 93蒲吉斌, 王立平, 薛群基. 石墨烯摩擦學及石墨烯基復合潤滑材料的研究進展. 摩擦學學報, 2014, 34(1):93 [65] Zhao J, Luo X, Chen J, et al. Progress in the application of nanotechnology to magnesia refractories. Chin J Eng, 2021, 43(1): 76趙嘉亮, 羅旭東, 陳俊紅, 等. 納米技術在鎂質耐火材料中應用的研究進展. 工程科學學報, 2021, 43(1):76 [66] Hvizdo? P, Dusza J, Balázsi C. Tribological properties of Si3N4–graphene nanocomposites. J Eur Ceram Soc, 2013, 33(12): 2359 doi: 10.1016/j.jeurceramsoc.2013.03.035 [67] Kvetková L, Duszová A, Hvizdo? P, et al. Fracture toughness and toughening mechanisms in graphene platelet reinforced Si3N4 composites. Scr Mater, 2012, 66(10): 793 doi: 10.1016/j.scriptamat.2012.02.009 [68] Wang X, Tan X Y, Yin Y S, et al. Analysis on toughening mechanisms of ceramic nano-composites. J Ceram, 2000, 21(2): 107 doi: 10.3969/j.issn.1000-2278.2000.02.009王昕, 譚訓彥, 尹衍升, 等. 納米復合陶瓷增韌機理分析. 陶瓷學報, 2000, 21(2):107 doi: 10.3969/j.issn.1000-2278.2000.02.009 [69] Tian M Y, Shi E W, Zhong W Z, et al. Nano ceramics and nano ceramic powders. J Inorg Mater, 1998, 13(2): 129 doi: 10.3321/j.issn:1000-324X.1998.02.001田明原, 施爾畏, 仲維卓, 等. 納米陶瓷與納米陶瓷粉末. 無機材料學報, 1998, 13(2):129 doi: 10.3321/j.issn:1000-324X.1998.02.001 [70] Zhang W Y. Research and applications of nanoceramics. Ceramics, 2019(5): 46張文毓. 納米陶瓷材料研究與應用. 陶瓷, 2019(5):46 -