<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

轉子發動機徑向密封片的研究綜述

紀常偉 楊振宇 楊金鑫 汪碩峰 黃雄輝 常珂

紀常偉, 楊振宇, 楊金鑫, 汪碩峰, 黃雄輝, 常珂. 轉子發動機徑向密封片的研究綜述[J]. 工程科學學報, 2022, 44(8): 1406-1424. doi: 10.13374/j.issn2095-9389.2021.06.02.002
引用本文: 紀常偉, 楊振宇, 楊金鑫, 汪碩峰, 黃雄輝, 常珂. 轉子發動機徑向密封片的研究綜述[J]. 工程科學學報, 2022, 44(8): 1406-1424. doi: 10.13374/j.issn2095-9389.2021.06.02.002
JI Chang-wei, YANG Zhen-yu, YANG Jin-xin, WANG Shuo-feng, HUANG Xiong-hui, CHANG Ke. Research overview of rotary engine apex seals[J]. Chinese Journal of Engineering, 2022, 44(8): 1406-1424. doi: 10.13374/j.issn2095-9389.2021.06.02.002
Citation: JI Chang-wei, YANG Zhen-yu, YANG Jin-xin, WANG Shuo-feng, HUANG Xiong-hui, CHANG Ke. Research overview of rotary engine apex seals[J]. Chinese Journal of Engineering, 2022, 44(8): 1406-1424. doi: 10.13374/j.issn2095-9389.2021.06.02.002

轉子發動機徑向密封片的研究綜述

doi: 10.13374/j.issn2095-9389.2021.06.02.002
基金項目: 科技部重點研發資助項目(2018YFB0105400);新能源汽車北京實驗室資助項目(JK005015201601);北京電動車輛協同創新中心資助項目(38005015201502);北京市科技計劃課題資助項目(Z181100004518006)
詳細信息
    通訊作者:

    E-mail: chwji@bjut.edu.cn

  • 中圖分類號: TK45+4.6

Research overview of rotary engine apex seals

More Information
  • 摘要: 徑向密封片作為轉子發動機最重要的密封部件,安裝在轉子的三個頂點,徑向密封片直接暴露在高溫高壓燃氣中,存在振拍、漏氣和磨損三大關鍵問題,這些問題會導致稱為“魔鬼爪痕”的缸體振紋的出現,這些問題直接影響轉子發動機的工作性能和使用壽命。NSU、Mazda等公司對徑向密封片的發展做出巨大,開發了多種型號徑向密封片并采用了多種材料。隨著材料技術的發展,一些新型材料與表面處理工藝可以應用于徑向密封片,例如:碳纖維、石墨烯等納米材料,激光表面處理、新型涂層等工藝。本文綜述了NSU、Mazda和Curtiss-Wright在徑向密封片上取得的成果,最后結合新型結構、新型材料與處理工藝,對徑向密封片的未來發展提出建議。

     

  • 圖  1  轉子上的密封組件[10]

    Figure  1.  Sealing parts on the rotor[10]

    圖  2  NSU公司和Mazda公司設計的徑向密封片

    Figure  2.  Apex seals designed by NSU & Mazda

    圖  3  處于上止點處的轉子機

    Figure  3.  Rotary engine at top dead center (TDC)

    圖  4  上止點位置的徑向密封片. (a)上止點前徑向密封片;(b)上止點后徑向密封片

    Figure  4.  Apex seal at the top dead center: (a) apex seal before TDC; (b) apex seal after TDC

    圖  5  NSU KM37轉子機缸體上的波狀磨損[12]

    Figure  5.  Chatter marks on the cylinder block of KM37[12]

    圖  6  氣缸型面振紋出現區域

    Figure  6.  Parts where the chatter marks occur in the cylinder block

    圖  7  轉子機氣缸內的漏氣路徑

    Figure  7.  Gas leakage path of the rotary engine

    圖  8  徑向密封片處的漏氣路徑

    Figure  8.  Gas leakage paths in the apex seal

    圖  9  工作腔內存氣量隨轉速的變化[17]

    Figure  9.  Variation in the air volume in the chamber with rotating speed[17]

    圖  10  不同位置的氣體泄漏率示意圖[19]

    Figure  10.  Gas leakage rate at different piston positions[19]

    圖  11  不同位置的總漏氣量示意圖[19]

    Figure  11.  Schematic diagram of total gas leakage at different positions[19]

    圖  12  火花塞腔處的漏氣

    Figure  12.  Gas leakage in the spark plug cavity

    圖  13  火花塞腔形狀的優化[24]

    Figure  13.  Form optimization of the spark plug cavity[24]

    圖  14  徑向密封片不同時間的磨損量[25]

    Figure  14.  Wearing capacity of the apex seal at different time[25]

    圖  15  向密封片最小油膜厚度分布[26]

    Figure  15.  Minimum oil film thickness distribution of the apex seal roof[26]

    圖  16  不同旋轉圈數下徑向密封片的磨損深度[27]

    Figure  16.  Wear depth of the apex seal with different circles[27]

    圖  17  三段組合式徑向密封片

    Figure  17.  Three-piece split-type apex seal

    圖  18  整體式與三段式徑向密封片比較 (節氣門全開)[29-30]

    Figure  18.  Three-piece apex seal compared to the single-piece apex seal (W.O.T) [29-30]

    圖  19  開設切口的三片組合式徑向密封片

    Figure  19.  Three-piece split-type apex seal with cavity

    圖  20  KKM612發動機徑向密封片工作原理[13]

    Figure  20.  Principle of the KKM612 rotary engine apex seal[13]

    圖  21  交叉孔徑向密封片[13]

    Figure  21.  Cross-hollow apex seal[13]

    圖  22  摩擦系數與摩擦振動振幅的關系[13]

    Figure  22.  Relation between the friction coefficient and frictional vibration amplitude[13]

    圖  23  整體式與組合式徑向密封片

    Figure  23.  Solid-type and split-type apex seal

    圖  24  設置有雙彈簧的兩段式徑向密封片

    Figure  24.  Two-piece split-type apex seal with dual springs

    圖  25  雙彈簧工作原理示意圖. (a) 彈簧Ⅰ工作;(b) 彈簧Ⅰ與Ⅱ工作

    Figure  25.  Working principle of the apex seal’s dual spring: (a) only spring Ⅰ works; (b) spring Ⅰ and spring Ⅱ work

    圖  26  上下斜分割三段式徑向密封片

    Figure  26.  Mazda three-piece split-type apex seal

    圖  27  上下斜分割三段式徑向密封片密封原理

    Figure  27.  Sealing principle of the Mazda three-piece apex seal

    圖  28  RC1-60轉子機密封結構[34]

    Figure  28.  Structure of RC1-60 rotary engine seals[34]

    圖  29  不同年代Curtiss-Wright公司對轉子機密封結構的改進[36]

    Figure  29.  Chronology of the Curtiss-Wright sealing grid development[36]

    圖  30  平衡可伸縮徑向密封裝置[37]

    Figure  30.  Counterweight retracted seal[37]

    圖  31  滲鋁炭精徑向密封片

    Figure  31.  Alumetizing carbon apex seal

    圖  32  徑向密封片圓弧面冷激處理[45]

    Figure  32.  Electron beam melting process for the apex seal and its cross section[45]

    圖  33  石墨–鋁與Ferro–TiC CSM塊對鍍鉻環磨損特性[49]

    Figure  33.  Wear properties of a graphite–aluminum and Ferro–TiC CSM block against a chrome-plated ring[49]

    圖  34  各種密封系統在室溫下的摩擦特性[49]

    Figure  34.  Friction characteristics of various sealing systems at room temperature[49]

    圖  35  各種密封系統在高溫下的摩擦特性[49]

    Figure  35.  Friction characteristics of three systems at elevated temperatures[49]

    圖  36  帶喇叭狀切口的徑向密封片設計

    Figure  36.  New apex seal design with a trumpet-shaped notch

    圖  37  帶切口的密封片工作原理示意圖. (a)上止點前徑向密封片;(b)上止點后徑向密封片

    Figure  37.  Principle of the apex seal with a trumpet-shaped notch: (a) apex seal before TDC; (b) apex seal after TDC

    圖  38  帶滾針的徑向密封片設計

    Figure  38.  Apex seal design with a roller pin

    圖  39  多密封片的徑向密封片系統

    Figure  39.  Multi-apex sealing system

    圖  40  懸臂式徑向密封裝置[55]

    Figure  40.  Cantilever flexure apex seal[55]

    圖  41  DLC涂層表面與球磨鑄鐵的摩擦系數[56]

    Figure  41.  Friction coefficients of the DLC coated surface and ductile cast iron[56]

    圖  42  激光表面紋理化處理后的徑向密封片表面[58]

    Figure  42.  Laser surface textured seal surface[58]

    圖  43  基于徑向密封片的氣缸型線設計[59]

    Figure  43.  Rotary engine profiles designed with an apex seal[59]

    圖  44  碳的同素異構體

    Figure  44.  Carbon isotope isomer

    圖  45  石墨烯增韌陶瓷的增韌機理示意圖[67]. (a) 未增韌陶瓷;(b) 增韌陶瓷

    Figure  45.  Schematic illustration of the toughening mechanisms in the ceramic–GPL composite[67]: (a) untoughened ceramics; (b) toughened ceramics

    表  1  徑向密封片材料的特性比較[31]

    Table  1.   Comparison of properties of radial seal materials

    Apex seal materialHardness
    (Hv)
    Bending strength/
    MPa
    Fracture toughness/
    (MPa·m1/2)
    Thermal shock
    resistance/°C
    Density/
    (g·cm?3)
    Carbon200–3003.5400–6002.1
    Fiber reinforced ceramics170012006.0>5503.3
    下載: 導出CSV

    表  2  納米陶瓷材料力學性能的改善[70]

    Table  2.   Improvement of mechanical properties of nano-ceramic materials

    Nano-ceramic materials
    (matrix/nano-dispersed phase)
    Toughness/

    (MPa·m1/2)
    Intensity/
    MPa
    Maximum use temperature/℃
    Al2O3/SiC3.5–4.8350–1520800–1200
    Al2O3/Si3N43.5–4.7350–850800–1200
    MgO/SiC1.2–4.5340–700600–1400
    Si3N4/SiC4.5–7.5350–15501200–1400
    下載: 導出CSV
    久色视频
  • [1] Liu J X. Numerical Modeling and Simulation for Small-Scale Rotary Engine. Beijing: Beijing Institute of Technology Press, 2020

    劉金祥著. 小型轉子發動機數值建模與仿真分析. 北京: 北京理工大學出版社, 2020
    [2] Pei H L, Zhou N J, Gao H L. The characteristics and improvement of rotary engines. Intern Combust Engines, 2006(3): 1 doi: 10.3969/j.issn.1000-6494.2006.03.001

    裴海靈, 周乃君, 高宏亮. 三角轉子發動機的特點及其發展概況綜述. 內燃機, 2006(3):1 doi: 10.3969/j.issn.1000-6494.2006.03.001
    [3] Xin D. Triangular Rotary Engine. Beijing: Science Press, 1981

    辛動. 三角轉子發動機. 北京: 科學出版社, 1981
    [4] Amrouche F, Erickson P A, Varnhagen S, et al. An experimental analysis of hydrogen enrichment on combustion characteristics of a gasoline Wankel engine at full load and lean burn regime. Int J Hydrog Energy, 2018, 43(41): 19250 doi: 10.1016/j.ijhydene.2018.08.110
    [5] Su T. Experimental Investigation on the Combustion and Emissions Characteristics of a Rotary Engine with Hydrogen Addition [Dissertation]. Beijing: Beijing University of Technology, 2019

    蘇騰. 摻氫轉子機燃燒與排放特性的試驗研究[學位論文]. 北京: 北京工業大學, 2019
    [6] Yang J X. Numerical Investigation of Hydrogen Enrichment on Flow Field and Combustion Process in a Gasoline Wankel Rotary Engine [Dissertation]. Beijing: Beijing University of Technology, 2019

    楊金鑫. 摻氫對汽油轉子機流場及燃燒過程影響的數值模擬研究[學位論文]. 北京: 北京工業大學, 2019
    [7] Chen W. Investigation on Combustion Characteristics and New Combustion Mode in a Diesel Wankel Engine [Dissertation]. Zhenjiang: Jiangsu University, 2019

    陳偉. 柴油汪克爾發動機燃燒特性及其新型燃燒模式研究[學位論文]. 鎮江: 江蘇大學, 2019
    [8] Hubmann C, Beste F, Friedl H, et al. Single cylinder 25 kW range extender as alternative to a rotary engine maintaining high compactness and NVH performance [J/OL]. SAE International Online (2013-10-15) [2021-10-4].https://www.sae.org/publications/technical-papers/content/2013-32-9132/
    [9] Noga M. Application of the internal combustion engine as a range-extender for electric vehicles. Combustion Engines, 2013: 52
    [10] Spreitzer J, Zahradnik F, Geringer B. Implementation of a rotary engine (Wankel engine) in a CFD simulation tool with special emphasis on combustion and flow phenomena [J/OL]. SAE International Online (2015-4-14) [2021-10-4].https://saemobilus.sae.org/content/2015-01-0382/
    [11] Lu F, Yu N B. Triangular Rotary Engine. Beijing: National Defense Industry Press, 1990

    盧法, 余乃彪. 三角轉子發動機. 北京: 國防工業出版社, 1990
    [12] Keller H. Small wankel engines. SAE Transactions, 1968: 2339
    [13] Shanghai Institute of Science and Technology Information. Foreign Triangle Piston Rotary Engine. Shanghai: Institute of Scientific and Technical Information of Shanghai Press, 1970

    上海科學技術情報所. 國外三角活塞旋轉式發動機. 上海: 上海科學技術情報所出版社, 1970
    [14] Gupta A, Jayaram S. Wankel rotary engine's apex seal/trochoid wear chatter 'the devil's nail marks persist'. Int J Sci Res Publ (IJSRP), 2019, 9(4): 8802
    [15] Eberle M K, Klomp E D. An evaluation of the potential performance gain from leakage reduction in rotary engines. SAE Transactions, 1973: 454
    [16] Wang Z K, Cheng Y, Zuo Z X. Research on gas leakage of small rotary engine // Proceedings of the 8th Annual Conference of Chinese Internal Combustion Engine Society. Shanghai, 2010: 333

    王志寬, 程穎, 左正興. 小型轉子發動機漏氣研究//中國內燃機學會第八屆學術年會論文集. 上海, 2010:333
    [17] Ma C F, Wang D S, Ye J W, et al. Combustion and Heat Transfer of Rotary Engine. Beijing: China Communications Press, 1981

    馬重芳, 王達三, 葉經緯, 等. 旋轉活塞發動機的燃燒和傳熱. 北京: 人民交通出版社, 1981
    [18] Hsu Y L. Analysis of the dynamic apex seal leakage of wankel engine [Dissertation]. Taichung: Chung Hsing University, 2015

    許右龍. 轉子引擎動態氣封洩漏分析[學位論文]. 臺中: 中興大學, 2015
    [19] Nagao A, Ohzeki H, Niura Y. Present status and future view of rotary engines. Automot Engine Altern, 1987: 183
    [20] Picard M, Tian T, Nishino T. Predicting gas leakage in the rotary engine—part I: Apex and corner seals. J Eng Gas Turbines Power, 2016, 138(6): 062503 doi: 10.1115/1.4031873
    [21] Fan B W, Zeng Y H, Zhang Y Y, et al. Research on the hydrogen injection strategy of a direct injection natural gas/hydrogen rotary engine considering apex seal leakage. Int J Hydrog Energy, 2021, 46(13): 9234 doi: 10.1016/j.ijhydene.2020.12.214
    [22] Fan B W, Wang Y G, Zhang Y Y, et al. Numerical investigation on the combustion performance of a natural gas/hydrogen dual fuel rotary engine under the action of apex seal leakage. Energy Fuels, 2021, 35(1): 770 doi: 10.1021/acs.energyfuels.0c03498
    [23] Zhang Y Y. Numerical Simulation of Combustion Process of Side-Ported Natural Gas Hydrogen-Doped Rotary Engine [Dissertation]. Zhenjiang: Jiangsu University, 2020

    張耀元. 端面進氣天然氣摻氫轉子發動機燃燒過程的數值模擬研究[學位論文]. 鎮江: 江蘇大學, 2020
    [24] Yamaoka K, Tado H. Improvements of the rotary engine with a charge cooled rotor [J/OL]. SAE International Online (1972-2-1) [2021-10-4].https://saemobilus.sae.org/content/720466/
    [25] He Z L, Liu C J, Zhang M. Dynamic simulation of the wear of radial airproof patch of triangle rotor engine. J Chongqing Jiaotong Univ (Nat Sci), 2008, 27(5): 835

    賀澤龍, 劉成俊, 張宓. 三角轉子發動機徑向密封片磨損的動態仿真. 重慶交通大學學報(自然科學版), 2008, 27(5):835
    [26] He Z L, Liu C J, Zhang M, et al. The friction analysis of the radial airproof patch of the triangle rotor engine. J Chongqing Univ Sci Technol (Nat Sci Ed), 2008, 10(3): 50

    賀澤龍, 劉成俊, 張宓, 等. 三角轉子發動機徑向密封片的摩擦學分析. 重慶科技學院學報(自然科學版), 2008, 10(3):50
    [27] Jiang H Y, Zuo Z X, Liu J X. Wear simulation of apex seal in rotary engine under mixed lubrication //AIP Conference Proceedings, Busan, 2018: 03003.https://doi.org/10.1063/1.5039061
    [28] Froede W G. The NSU-Wankel rotating combustion engine. SAE Transactions, 1961, 69: 179
    [29] Froede W G. Recent developments in the Nsu wankel engine. Proceedings of the Institution of Mechanical Engineers:Automobile Division, 1965, 180(1): 279 doi: 10.1243/PIME_AUTO_1965_180_028_02
    [30] Froede W G. The rotary engine of the NSU spider[J/OL]. SAE International Online (1965-2-1) [2021-10-4].https://www.sae.org/publications/technical-papers/content/650722/
    [31] Shimizu R, Tadokoro T, Nakanishi T, et al. Mazda 4-rotor rotary engine for the Le Mans 24-hour endurance race [J/OL]. SAE International Online (1992-2-1) [2021-10-4]https://www.sae.org/publications/technical-papers/content/920309/
    [32] Ohkubo M, Tashima S, Shimizu R, et al. Developed technologies of the new rotary engine (RENESIS) [J/OL]. SAE International Online (2004-3-8) [2021-10-4].https://saemobilus.sae.org/content/2004-01-1790/
    [33] Fujimoto Y, Tatsutomi Y, Ozeki H, et al. Present and prospective technologies of rotary engine. SAE Transactions, 1987, 96(5): 87
    [34] Jones C. The Curtiss-Wright rotating combustion engines today. SAE Transactions, 1965, 73: 127
    [35] Jones C. A review of curtiss-wright rotary engine developments with respect to general aviation potential[J/OL]. SAE International Online (1979-2-1) [2021-10-4].https://saemobilus.sae.org/content/790621/
    [36] Jones C. A survey of Curtiss-Wright's 1958-1971 rotating combustion engine technological developments[J/OL]. SAE International Online (1972-2-1) [2021-10-4].https://saemobilus.sae.org/content/720468/
    [37] Jones C. Advanced rotary engine studies // General Aviation Propulsion Conference, Washington: 1980: 28
    [38] Zhuzhou Cemented Carbide Factory. Steel Knot Cemented Carbide. Beijing: Metallurgical Industry Press, 1982

    株洲硬質合金廠. 鋼結硬質合金. 北京: 冶金工業出版社, 1982
    [39] Revolutionary Committee of Changchun Automobile Research Institute. Summary Report of QY650 Rotary Piston Engine Development Stage. Changchun: Revolutionary Committee of Changchun Automobile Research Institute, 1971

    長春汽車研究所革命委員會. QY650型旋轉活塞發動機研制工作階段總結報告. 長春: 長春汽車研究所革命委員會, 1971
    [40] Yamamoto K. Rotary piston engine. J Fuel Society Japan, 1965, 44(6): 449 doi: 10.3775/jie.44.6_449
    [41] Prasse H F, McCormick H E, Anderson R D. A critical analysis of the rotary engine sealing problem[J/OL]. U. S. Department of Energy International Online (1986-1-1) [2021-10-4].https://www.osti.gov/biblio/5730971
    [42] Muroki T. Recent technology development of high-powered rotary engine at Mazda. SAE transactions, 1984: 689
    [43] Yamamoto K, Kuroda T. Toyo Kogyo’s research and development on major rotary engine problems. SAE Transactions, 1970, 79: 216
    [44] Muroki T, Miyata J. Material technology development applied to rotary engine at Mazda[J/OL]. SAE International Online (1973-2-1) [2021-10-4].https://www.sae.org/publications/technical-papers/content/730118/
    [45] Yamamoto K. Rotary Engine. Hiroshima: Sankaido Co. Ltd. , 1981
    [46] Wang X M, Liu Y X, Dai L L, et al. Research on friction and wear behaviour of chilled iron. J Nanchang Univ (Eng Technol), 2001, 23(3): 53

    汪先明, 劉燕霞, 戴莉莉, 等. 激冷鑄鐵摩擦磨損性能的研究. 南昌大學學報(工科版), 2001, 23(3):53
    [47] Beijing Electron Tube Factory. Steel Bonded Alloy. Beijing: National Defense Industry Press, 1971

    北京電子管廠編. 鋼結合金. 北京: 國防工業出版社, 1971
    [48] Zhou S Z. Hard Materials and Tools. Beijing: Metallurgical Industry Press, 2015

    周書助. 硬質材料與工具. 北京: 冶金工業出版社, 2015
    [49] Ellis J L, Mal K. New developments in powder metal sealing elements. Wear, 1975, 32(3): 327 doi: 10.1016/0043-1648(75)90320-8
    [50] Kamiya S, Shirasagi S. Suzuki production rotary engine, model RE-5 for powering motorcycles[J/OL]. SAE International Online (1977-2-1) [2021-10-4].https://www.sae.org/publications/technical-papers/content/770190/
    [51] Guo R S, Cai S, Ji H M. et al. Engineering Structural Ceramics. Tianjin: Tianjin University Press, 2002

    郭瑞松, 蔡舒, 季惠明, 等. 工程結構陶瓷. 天津: 天津大學出版社, 2002
    [52] Li Z Y. Improvement of cylinder radial sealing film in rotary engine. For Eng, 2011, 27(6): 48 doi: 10.3969/j.issn.1001-005X.2011.06.013

    李芝勇. 對轉子發動機氣缸徑向密封片的改進. 森林工程, 2011, 27(6):48 doi: 10.3969/j.issn.1001-005X.2011.06.013
    [53] Rose S W, Yang D C H. Wide and multiple apex seals for the rotary engine. Mech Mach Theory, 2014, 74: 202 doi: 10.1016/j.mechmachtheory.2013.12.011
    [54] Martinez F C, Knobloch A J, Pisano A P. Apex seal design for the MEMS rotary engine power system // Proceedings of ASME 2003 International Mechanical Engineering Congress and Exposition. Washington, 2008: 157
    [55] Heppner J D, Walther D C, Pisano A P. Leakage flow analysis for a MEMS rotary engine // Proceedings of ASME 2003 International Mechanical Engineering Congress and Exposition. Washington, 2008: 327
    [56] Zhang S, Liu J X, Zhou Y. Effect of DLC coating on the friction power loss between apex seal and housing in small Wankel rotary engine. Tribol Int, 2019, 134: 365 doi: 10.1016/j.triboint.2019.02.005
    [57] Etsion I, Sher E. Improving fuel efficiency with laser surface textured piston rings. Tribol Int, 2009, 42(4): 542 doi: 10.1016/j.triboint.2008.02.015
    [58] Morris N, Hart G, Wong Y J, et al. Laser surface texturing of Wankel engine apex seals. Surf Topogr:Metrol Prop, 2020, 8(3): 034001 doi: 10.1088/2051-672X/ababf5
    [59] Warren S, Yang D C H. Design of rotary engines from the apex seal profile (Abbr. : Rotary engine design by apex seal). Mech Mach Theory, 2013, 64: 200
    [60] Dou P F. Research progress of silicon nitride ceramics toughened by carbon materials. Ceramics, 2019(6): 54 doi: 10.3969/j.issn.1002-2872.2019.06.009

    豆鵬飛. 碳材料增韌氮化硅陶瓷研究進展. 陶瓷, 2019(6):54 doi: 10.3969/j.issn.1002-2872.2019.06.009
    [61] Hao C Y, Yang M H, Yang H T, et al. Discussion on toughened silicon nitride ceramic composites by carbon nanotubes. Ceramics, 2005(2): 21 doi: 10.3969/j.issn.1002-2872.2005.02.005

    郝春云, 楊明輝, 楊海濤, 等. 碳納米管增韌氮化硅陶瓷復合材料的探討. 陶瓷, 2005(2):21 doi: 10.3969/j.issn.1002-2872.2005.02.005
    [62] Guo Z, Xin Q, Zang Y, et al. Effects of graphene oxide doping content and pH on energy storage performance of graphene aerogel. Chin J Eng, 2021, 43(2): 239

    郭志成, 辛青, 臧月, 等. 氧化石墨烯摻雜量與pH值對石墨烯氣凝膠儲能性能的影響. 工程科學學報, 2021, 43(2):239
    [63] Lee X J, Hiew B Y Z, Lai K C, et al. Review on graphene and its derivatives: Synthesis methods and potential industrial implementation. J Taiwan Inst Chem Eng, 2019, 98: 163 doi: 10.1016/j.jtice.2018.10.028
    [64] Pu J B, Wang L P, Xue Q J. Progress of tribology of graphene and graphene-based composite lubricating materials. Tribology, 2014, 34(1): 93

    蒲吉斌, 王立平, 薛群基. 石墨烯摩擦學及石墨烯基復合潤滑材料的研究進展. 摩擦學學報, 2014, 34(1):93
    [65] Zhao J, Luo X, Chen J, et al. Progress in the application of nanotechnology to magnesia refractories. Chin J Eng, 2021, 43(1): 76

    趙嘉亮, 羅旭東, 陳俊紅, 等. 納米技術在鎂質耐火材料中應用的研究進展. 工程科學學報, 2021, 43(1):76
    [66] Hvizdo? P, Dusza J, Balázsi C. Tribological properties of Si3N4–graphene nanocomposites. J Eur Ceram Soc, 2013, 33(12): 2359 doi: 10.1016/j.jeurceramsoc.2013.03.035
    [67] Kvetková L, Duszová A, Hvizdo? P, et al. Fracture toughness and toughening mechanisms in graphene platelet reinforced Si3N4 composites. Scr Mater, 2012, 66(10): 793 doi: 10.1016/j.scriptamat.2012.02.009
    [68] Wang X, Tan X Y, Yin Y S, et al. Analysis on toughening mechanisms of ceramic nano-composites. J Ceram, 2000, 21(2): 107 doi: 10.3969/j.issn.1000-2278.2000.02.009

    王昕, 譚訓彥, 尹衍升, 等. 納米復合陶瓷增韌機理分析. 陶瓷學報, 2000, 21(2):107 doi: 10.3969/j.issn.1000-2278.2000.02.009
    [69] Tian M Y, Shi E W, Zhong W Z, et al. Nano ceramics and nano ceramic powders. J Inorg Mater, 1998, 13(2): 129 doi: 10.3321/j.issn:1000-324X.1998.02.001

    田明原, 施爾畏, 仲維卓, 等. 納米陶瓷與納米陶瓷粉末. 無機材料學報, 1998, 13(2):129 doi: 10.3321/j.issn:1000-324X.1998.02.001
    [70] Zhang W Y. Research and applications of nanoceramics. Ceramics, 2019(5): 46

    張文毓. 納米陶瓷材料研究與應用. 陶瓷, 2019(5):46
  • 加載中
圖(45) / 表(2)
計量
  • 文章訪問數:  9513
  • HTML全文瀏覽量:  1015
  • PDF下載量:  189
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-06-02
  • 網絡出版日期:  2021-07-18
  • 刊出日期:  2022-07-06

目錄

    /

    返回文章
    返回