<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于溫度效應的半水磷石膏水化反應熱動力學模型

王貽明 王志凱 吳愛祥 彭青松 李劍秋

王貽明, 王志凱, 吳愛祥, 彭青松, 李劍秋. 基于溫度效應的半水磷石膏水化反應熱動力學模型[J]. 工程科學學報, 2022, 44(11): 1811-1820. doi: 10.13374/j.issn2095-9389.2021.03.30.003
引用本文: 王貽明, 王志凱, 吳愛祥, 彭青松, 李劍秋. 基于溫度效應的半水磷石膏水化反應熱動力學模型[J]. 工程科學學報, 2022, 44(11): 1811-1820. doi: 10.13374/j.issn2095-9389.2021.03.30.003
WANG Yi-ming, WANG Zhi-kai, WU Ai-xiang, PENG Qing-song, LI Jian-qiu. Thermodynamic model of the hydration reaction of hemihydrate phosphogypsum based on the temperature effect[J]. Chinese Journal of Engineering, 2022, 44(11): 1811-1820. doi: 10.13374/j.issn2095-9389.2021.03.30.003
Citation: WANG Yi-ming, WANG Zhi-kai, WU Ai-xiang, PENG Qing-song, LI Jian-qiu. Thermodynamic model of the hydration reaction of hemihydrate phosphogypsum based on the temperature effect[J]. Chinese Journal of Engineering, 2022, 44(11): 1811-1820. doi: 10.13374/j.issn2095-9389.2021.03.30.003

基于溫度效應的半水磷石膏水化反應熱動力學模型

doi: 10.13374/j.issn2095-9389.2021.03.30.003
基金項目: 國家自然科學基金重點資助項目(51834001)
詳細信息
    通訊作者:

    E-mail: ustbwzk@163.com

  • 中圖分類號: TD853

Thermodynamic model of the hydration reaction of hemihydrate phosphogypsum based on the temperature effect

More Information
  • 摘要: 為擴大半水磷石膏(HPG)作為充填膠凝材料的工業應用半徑,實現HPG資源化利用技術新突破。本文尋求一種在堆存過程中HPG水化反應放熱量變化的模型,以了解其膠凝性能的變化情況。通過對初始溫度為35、40、60和80 ℃的HPG堆體進行自由水質量分數和溫度監測,發現HPG自由水質量分數變化規律符合一級反應動力學模型,之后基于熱力學和化學反應動力學基本理論,提出了一種關于堆存溫度與時間關系的HPG水化反應熱動力學模型。最后,采用COMSOL Multiphysics數值模擬軟件,將HPG水化反應熱動力學方程嵌入傳熱和ODE模塊,對HPG堆體溫度進行數值模擬,模擬堆體溫度變化曲線與試驗結果較為吻合,驗證了所提出模型的可靠性。

     

  • 圖  1  HPG粒徑分布

    Figure  1.  Particle size distribution of HPG

    圖  2  堆體內部溫度與化學相互耦合作用關系圖

    Figure  2.  Relationship between the temperature and chemical interaction in the reactor

    圖  3  熱傳導示意圖

    Figure  3.  Heat conduction diagram

    圖  4  不同初始堆存溫度下自由水質量分數回歸擬合.(a)35 ℃;(b)40 ℃;(c)60 ℃;(d)80 ℃

    Figure  4.  Regression fit of the free water mass fraction at different initial storage temperatures: (a) 35 ℃; (b) 40 ℃; (c) 60 ℃; (d) 80 ℃

    圖  5  反應速率常數隨初始堆存溫度的變化趨勢

    Figure  5.  Trends of reaction rate constants with the initial storage temperature

    圖  6  對稱物理模型及網格劃分

    Figure  6.  Symmetric physical model and grid division

    圖  7  本構模型嵌入. (a) 傳熱模塊設置;(b) ODE模塊設置

    Figure  7.  Constitutive model embedding: (a) heat transfer module setup; (b) ODE module setup

    圖  8  模擬溫度變化曲線與試驗結果對比. (a) 內部溫度;(b) 表面溫度

    Figure  8.  Comparison of the simulated temperature change curve with the test results: (a) internal temperature; (b) surface temperature

    圖  9  不同初始堆存溫度HPG堆體堆存36 h后溫度云圖. (a) 35 ℃;(b) 40 ℃;(c) 60 ℃;(d) 80 ℃

    Figure  9.  Temperature cloud diagram after storage of 36 h HPG with different initial storage temperatures: (a) 35 ℃; (b) 40 ℃; (c) 60 ℃; (d) 80 ℃

    表  1  HPG相關性質參數

    Table  1.   Property parameters of HPG

    MaterialFree water mass fraction/%Crystal water mass
    fraction /%
    Porosity/%
    HPG22.105.4052.95
    下載: 導出CSV

    表  2  相關物質熱力學數據

    Table  2.   Thermodynamic data for related substances

    CompoundsStandard Gibbs free energy, $\Delta G_T^{\ominus }$/(kJ·mol?1)Standard molar enthalpy of formation, $\Delta H_T^{\ominus }$/(kJ·mol?1)
    CaSO4·2H2O(s)?2080.51?2022.63
    CaSO4·0.5H2O(s)?1615.66?1576.74
    H2O(aq)?306.68?285.83
    下載: 導出CSV

    表  3  不同初始堆存溫度條件下HPG自由水質量分數變化規律數學擬合結果

    Table  3.   Mathematical fitting results of the variation law of the HPG free water mass fraction under different initial storage temperatures

    Initial storage temperature/℃Fitting equationReaction rate constant ,kR2
    35$ Z = 18.79 \times {{\text{e}}^{ - 0.1903}}^t $0.19030.9626
    40$ Z = 15.81 \times {{\text{e}}^{ - 0.2152}}^t $0.21520.9270
    60$ Z = 12.30 \times {{\text{e}}^{ - 0.3773}}^t $0.37730.9261
    80$ Z = 10.26 \times {{\text{e}}^{ - 0.4938}}^t $0.49380.8865
    下載: 導出CSV

    表  4  相關參數設置

    Table  4.   Relevant parameter settings

    ParametersValue
    Activation energy, Ea / (J·mol?1)15300
    Frequency factor, A / s?187.99
    Convection heat transfer coefficient, Uk / (W·m?2·K?1)20
    Thermal conductivity, TC / (W·m?1·K?1)0.33
    HPG density, HD / (kg·m?3)1500
    Reaction heat, RH / (kJ·kg?1)118.28
    Thermal capacity, Cp / (J·kg?1·K?1)1050
    Initial storage temperature, T0 / K308.15, 313.15,
    333.15, 353.15
    Pore mediaAir
    下載: 導出CSV
    久色视频
  • [1] Yang L, Cao J X, Liu Y M. Mineralogical characteristics of hemi-hydrate phosphogypsum. Acta Petrol et Mineral, 2015, 34(6): 827 doi: 10.3969/j.issn.1000-6524.2015.06.005

    楊林, 曹建新, 劉亞明. 半水磷石膏的礦物學特征. 巖石礦物學雜志, 2015, 34(6):827 doi: 10.3969/j.issn.1000-6524.2015.06.005
    [2] Wang Y M, Wang Z K, Wu A X, et al. Preparation of new cementitious backfilling material and its curing mechanism analysis. Met Mine, 2018(6): 20

    王貽明, 王志凱, 吳愛祥, 等. 新型膠凝充填材料制備及固化機理分析. 金屬礦山, 2018(6):20
    [3] Lan W T, Wu A X, Wang Y M, et al. Experimental study on influencing factors of the filling strength of hemihydrate phosphogypsum. J Harbin Inst Technol, 2019, 51(8): 128 doi: 10.11918/j.issn.0367-6234.201804082

    蘭文濤, 吳愛祥, 王貽明, 等. 半水磷石膏充填強度影響因素試驗. 哈爾濱工業大學學報, 2019, 51(8):128 doi: 10.11918/j.issn.0367-6234.201804082
    [4] Yan P Y, Zheng F. Kinetics model for the hydration mechanism of cementitious materials. J Chin Ceram Soc, 2006, 34(5): 555 doi: 10.3321/j.issn:0454-5648.2006.05.009

    閻培渝, 鄭峰. 水泥基材料的水化動力學模型. 硅酸鹽學報, 2006, 34(5):555 doi: 10.3321/j.issn:0454-5648.2006.05.009
    [5] Li L X, Xie Y J, Feng Z W, et al. Cement hydration mechanism and research methods. Concrete, 2011(6): 76

    李林香, 謝永江, 馮仲偉, 等. 水泥水化機理及其研究方法. 混凝土, 2011(6):76
    [6] Han F H, Liu J H, Yan P Y. Effect of temperature on hydration of composite binder containing slag. J Chin Ceram Soc, 2016, 44(8): 1071

    韓方暉, 劉娟紅, 閻培渝. 溫度對水泥-礦渣復合膠凝材料水化的影響. 硅酸鹽學報, 2016, 44(8):1071
    [7] Lü Q H, Xiao L Z. Temperature effect of cement-based materials based on hydration kinetics model. J Wuhan Inst Technol, 2020, 42(4): 434

    呂全紅, 肖蓮珍. 基于水化動力學模型的水泥基材料溫度效應. 武漢工程大學學報, 2020, 42(4):434
    [8] Ulm F J, Coussy O. Modeling of thermochemomechanical couplings of concrete at early ages. J Eng Mech, 1995, 121(7): 785 doi: 10.1061/(ASCE)0733-9399(1995)121:7(785)
    [9] Suzuki M, Fukuura N, Takeda H, et al. Establishment of coupled analysis of interaction between structural deterioration and reinforcement corrosion by salt damage. J Adv Concr Technol, 2016, 14(9): 559 doi: 10.3151/jact.14.559
    [10] Gawin D, Pesavento F, Schrefler B A. Hygro-thermo-chemo-mechanical modelling of concrete at early ages and beyond. Part I: Hydration and hygro-thermal phenomena. Int J Numer Meth Engng, 2006, 67(3): 299
    [11] Feng C Q, Yu X M, Chang X L, et al. The deduction and application of a hydration model for concrete based on chemical reaction kinetics. China Rural Water Hydropower, 2019(1): 152 doi: 10.3969/j.issn.1007-2284.2019.01.029

    馮楚橋, 余曉敏, 常曉林, 等. 混凝土水化化學反應動力學模型的推導及應用. 中國農村水利水電, 2019(1):152 doi: 10.3969/j.issn.1007-2284.2019.01.029
    [12] Liu S H, Wang L, Gao Y X, et al. Influence of fineness on hydration kinetics of supersulfated cement. Thermochimica Acta, 2015, 605: 37 doi: 10.1016/j.tca.2015.02.013
    [13] Neusinger R, Drach V, Ebert H P, et al. Computer simulations that illustrate the heat balance of landfills. Int J Thermophys, 2005, 26(2): 519 doi: 10.1007/s10765-005-4513-x
    [14] Wang Z K, Wang Y M, Wu A X, et al. Effect of storage temperature on the cementitious property of hemihydrate phosphogypsum. Chin J Eng, 2022, 44(5): 840

    王志凱, 王貽明, 吳愛祥, 等. 堆存溫度對半水磷石膏膠凝性能影響. 工程科學學報, 2022, 44(5):840
    [15] Liu X H, Zhang C, Chang X L, et al. Precise simulation analysis of the thermal field in mass concrete with a pipe water cooling system. Appl Therm Eng, 2015, 78: 449 doi: 10.1016/j.applthermaleng.2014.12.050
    [16] Yang X W, He A P, Yuan B C. Manual for the Calculation of Thermodynamic Data in High Temperature. Beijing: Metallurgical Industry Press, 1983

    楊顯萬, 何藹平, 袁寶州. 高溫水溶液熱力學數據計算手冊. 北京: 冶金工業出版社, 1983
    [17] Li X B. Crystal Morphology Control and Hydration Hardening Properties of High Strength Α-Hemihydrate Phosphogypsum [Dissertation]. Guiyang: Guizhou University, 2019

    李顯波. 高強α半水磷石膏晶形調控及水化硬化性能研究[學位論文]. 貴陽: 貴州大學, 2019
    [18] Hong Q Y. Study on influence factors of rate of chemical reaction. Guangzhou Chem Ind, 2017, 45(17): 201 doi: 10.3969/j.issn.1001-9677.2017.17.072

    洪清揚. 探析影響化學反應速率的因素. 廣州化工, 2017, 45(17):201 doi: 10.3969/j.issn.1001-9677.2017.17.072
    [19] Zheng X, Chen Z B. Exploration into temperature-chemical coupling effect in landfill disposal of household rubbish in urban area. J Kunming Univ, 2015, 37(3): 77

    鄭旴, 陳澤斌. 城市生活垃圾填埋處置中的溫度-化學耦合作用探討. 昆明學院學報, 2015, 37(3):77
    [20] Yang J. A Study of Coupled Temperature and Chemical Processes in Municiple Solid Waste’s Landfill [Dissertation]. Chengdu: Southwest Jiaotong University, 2007

    楊軍. 城市生活垃圾填埋處置中的溫度-化學耦合作用研究[學位論文]. 成都: 西南交通大學, 2007
    [21] Xiao Y F, Li W B. Physical Chemistry. 2nd Ed. Tianjin: Tianjin University Press, 2004

    肖衍繁, 李文斌. 物理化學. 2版. 天津: 天津大學出版社, 2004
    [22] Zhao X Z. Principle of Chemical Reaction Dynamics. Beijing: Higher Education Press, 1984

    趙學莊. 化學反應動力學原理. 北京: 高等教育出版社, 1984
    [23] Zhang Z X, Guo F, Song W, et al. Empirical correction of kinetic model for polymer thermal reaction process based on first order reaction kinetics. Chin J Chem Eng, 2021, 38: 132 doi: 10.1016/j.cjche.2020.09.023
    [24] Reddy M G, Naveen Kumar R, Prasannakumara B C, et al. Magnetohydrodynamic flow and heat transfer of a hybrid nanofluid over a rotating disk by considering Arrhenius energy. Commun Theor Phys, 2021, 73(4): 045002 doi: 10.1088/1572-9494/abdaa5
    [25] Yang L. Evolution of Mineralogical Characteristics and Gelling Properties of Hemi-Hydrate Phosphogypsum [Dissertation]. Guiyang: Guizhou University, 2016

    楊林. 半水磷石膏礦物學特征及膠凝性能變化行為[學位論文]. 貴陽: 貴州大學, 2016
    [26] Wang Y, Wu A X, Wang H J, et al. Damage constitutive model of cemented tailing paste under initial temperature effect. Chin J Eng, 2017, 39(1): 31

    王勇, 吳愛祥, 王洪江, 等. 初始溫度條件下全尾膠結膏體損傷本構模型. 工程科學學報, 2017, 39(1):31
  • 加載中
圖(9) / 表(4)
計量
  • 文章訪問數:  531
  • HTML全文瀏覽量:  221
  • PDF下載量:  76
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-03-30
  • 網絡出版日期:  2021-05-17
  • 刊出日期:  2022-11-01

目錄

    /

    返回文章
    返回