<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于13C?NMR和FTIR的煤塵潤濕性定量表征

林清俠 汪澍 金龍哲 歐盛南

林清俠, 汪澍, 金龍哲, 歐盛南. 基于13C?NMR和FTIR的煤塵潤濕性定量表征[J]. 工程科學學報, 2022, 44(11): 1844-1851. doi: 10.13374/j.issn2095-9389.2021.03.23.001
引用本文: 林清俠, 汪澍, 金龍哲, 歐盛南. 基于13C?NMR和FTIR的煤塵潤濕性定量表征[J]. 工程科學學報, 2022, 44(11): 1844-1851. doi: 10.13374/j.issn2095-9389.2021.03.23.001
LIN Qing-xia, WANG Shu, JIN Long-zhe, OU Sheng-nan. Quantitative characterization of coal dust wettability based on 13C?NMR and FTIR[J]. Chinese Journal of Engineering, 2022, 44(11): 1844-1851. doi: 10.13374/j.issn2095-9389.2021.03.23.001
Citation: LIN Qing-xia, WANG Shu, JIN Long-zhe, OU Sheng-nan. Quantitative characterization of coal dust wettability based on 13C?NMR and FTIR[J]. Chinese Journal of Engineering, 2022, 44(11): 1844-1851. doi: 10.13374/j.issn2095-9389.2021.03.23.001

基于13C?NMR和FTIR的煤塵潤濕性定量表征

doi: 10.13374/j.issn2095-9389.2021.03.23.001
基金項目: 十三五國家重點研發計劃重點專項資助項目(2017YFC0805207);國家自然科學基金資助項目(51874015)
詳細信息
    通訊作者:

    E-mail: ustbwangshu@ustb.edu.cn

  • 中圖分類號: TD714

Quantitative characterization of coal dust wettability based on 13C?NMR and FTIR

More Information
  • 摘要: 為從微觀角度研究煤塵潤濕性影響因素,探究分子結構參數與煤塵潤濕性之間的定量關系,選取3種不同煤階的煤樣進行煤質特征分析以及煤塵潤濕性接觸角測定,同時通過13C核磁共振(13C?NMR)和紅外光譜(FTIR)實驗,獲得了煤分子結構參數,利用SPSS進行煤分子結構參數與接觸角的相關性分析,最后,通過MATLAB進行在3種不同類型表面活性劑作用下的煤塵潤濕性定量表征方程的構建。結果表明:在不同類型表面活性劑的作用下,影響煤塵潤濕性的主要因素不同,主要為: 13C?NMR結構參數中的季碳、亞甲基和次甲基(${{f}}_{\text{al}}^{\text{H}}$)、酚或芳醚碳(${{f}}_{\text{a}}^{\text{P}}$)、橋接芳碳(${{f}}_{\text{a}}^{\text{B}}$),FTIR結構參數中的酯基(?COO?)、醚基(?O?)、羰基(C=O),可依據構建的定量表征方程,利用煤塵微觀分子結構數據,快速進行煤塵潤濕性的表征,進一步豐富了煤塵潤濕的微觀機理。

     

  • 圖  1  實驗與數據處理流程圖

    Figure  1.  Experiment and data processing flowchart

    圖  2  不同煤樣的13C?NMR分峰擬合圖。(a)不粘煤;(b)氣肥煤;(c)無煙煤

    Figure  2.  13C-NMR peak fitting diagrams of coal dust with different degrees of metamorphism: (a) BN; (b) QF; (c) WY

    圖  3  煤樣碳結構參數變化。(a)${{f}}_{\text{a}}$${{f}}_{\text{a}}^{\text{}\text{C}}$;(b)${{f}}_{\text{a}}^{\text{}\text{H}}$${{f}}_{\text{a}}^{\text{}\text{N}}$;(c)${{f}}_{\text{a}}^{\text{}\text{P}}$${{f}}_{\text{a}}^{\text{}\text{S}}$${{f}}_{\text{a}}^{\text{}\text{B}}$;(d)${{f}}_{\text{al}}^{\text{}\text{*}}$${{f}}_{\text{al}}^{\text{}\text{H}}$${{f}}_{\text{al}}^{\text{}\text{O}}$

    Figure  3.  Carbon structural parameters chart of coal dust: (a) ${{f}}_{\text{a}}$, ${{f}}_{\text{a}}^{\text{}\text{C}}$; (b) ${{f}}_{\text{a}}^{\text{}\text{H}}$, ${{f}}_{\text{a}}^{\text{}\text{N}}$; (c) ${{f}}_{\text{a}}^{\text{}\text{P}}$, ${{f}}_{\text{a}}^{\text{}\text{S}}$, ${{f}}_{\text{a}}^{\text{}\text{B}}$; (d) ${{f}}_{\text{al}}^{\text{}\text{*}}$,${\text{}{f}}_{\text{al}}^{\text{}\text{H}}$, ${{f}}_{\text{al}}^{\text{}\text{O}}$

    圖  4  各煤樣紅外光譜圖

    Figure  4.  Infrared spectrogram of each coal sample

    圖  5  不粘煤、氣肥煤、無煙煤的FTIR分峰圖。(a)不粘煤FTIR分峰圖:波數為700~900 cm?1;(b)不粘煤FTIR分峰圖:波數為1000~1800 cm?1;(c)不粘煤FTIR分峰圖:波數為2800~3000 cm?1;(d)氣肥煤FTIR分峰圖:波數為700~900 cm?1;(e)氣肥煤FTIR分峰圖:波數為1000~1800 cm?1;(f)氣肥煤FTIR分峰圖:波數為2800~3000 cm?1;(g)無煙煤FTIR分峰圖:波數為700~900 cm?1;(h)無煙煤FTIR分峰圖:波數為1000~1800 cm?1;(i)無煙煤FTIR分峰圖:波數為2800~3000 cm?1

    Figure  5.  FTIR peak fitting diagram of BN, QF and WY:(a) FTIR peak fitting diagram of BN with wave number of 700–900 cm?1; (b) FTIR peak fitting diagram of BN with wave number of 1000–1800 cm?1; (c) FTIR peak fitting diagram of BN with wave number of 2800–3000 cm?1; (d) FTIR peak fitting diagram of QF with wave number of 700–900 cm?1; (e) FTIR peak fitting diagram of QF with wave number of 1000–1800 cm?1; (f) FTIR peak fitting diagram of QF with wave number of 2800–3000 cm?1; (g) FTIR peak fitting diagram of WY with wave number of 700–900 cm?1; (h) FTIR peak fitting diagram of WY with wave number of 1000–1800 cm?1; (i) FTIR peak fitting diagram of WY with wave number of 2800–3000 cm?1

    圖  6  煤樣芳香烴、脂肪烴、含氧官能團變化

    Figure  6.  Aromatic hydrocarbon, aliphatic hydrocarbon, and oxygen-containing functional group chart of the coal sample

    表  1  煤樣的工業分析和元素分析(質量分數)

    Table  1.   Industry analysis and elementary analysis of the coal sample %

    Coal sampleIndustry analysis Elemental analysis
    MadAdVdafFCad CdafOdafHdafNdafSdaf
    BN4.832.5632.9359.68 81.5010.65.481.510.65
    QF1.577.7631.6259.0582.719.615.351.700.58
    WY1.257.3020. 5070.9592.352.273.510.910.80
    下載: 導出CSV

    表  2  煤塵潤濕性接觸角測定結果

    Table  2.   Results of wettability contact angle measurement of coal dust

    Coal sampleContact angle /(°)
    Distilled waterOP?10Rapid penetrant T1631
    BN52.7322.1611.5642.35
    QF68.1627.1713.7840.27
    WY74.9813.2914.9826.36
    下載: 導出CSV

    表  3  煤樣13C?NMR結構參數表

    Table  3.   NMR structure parameters of coal dust

    Coal sample$ {f}_{\text{a}} $${{f} }_{\text{a} }^{\text{}\text{C} }$${ {f} }_{\text{a} }{\text{}{'}\text{} }$${{f} }_{\text{a} }^{\text{}\text{H} }$${{f} }_{\text{a} }^{\text{}\text{N} }$${{f} }_{\text{a} }^{\text{}\text{B} }$${{f} }_{\text{a} }^{\text{}\text{S} }$${{f} }_{\text{a} }^{\text{}\text{P} }$${{f} }_{\text{al} }$${{f} }_{\text{al} }^{\text{}\text{*} }$${{f} }_{\text{al} }^{\text{}\text{H} }$${{f} }_{\text{al} }^{\text{}\text{O} }$
    BN0.8180.0290.7890.5440.2450.14900.0950.1820.0660.1150.001
    QF0.6790.0120.6670.4760.1910.1280.0340.0290.3210.0890.1910.041
    WY0.8980.0260.8720.5790.2930.2240.06900.1020.0420.0350.025
    下載: 導出CSV

    表  4  各煤樣紅外結構參數含量

    Table  4.   Infrared structure parameter content of each coal sample %

    Coal sampleInfrared structure parameter content of coal sample
    Aromatic hydrocarbonAliphatic hydrocarbonC?OC=O?O??OH?COO?
    BN3.9571.6771.9255.0955.3271.0690.060
    QF11.2707.3678.5912.9162.4220.6220.091
    WY4.9840.4972.8900.0730.2500.5400.142
    下載: 導出CSV

    表  5  OP?10作用下的煤樣13C?NMR結構參數與潤濕性相關性分析

    Table  5.   Correlation analysis of 13C?NMR structural parameters and wettability of OP?10

    Correlation factorsCorrelation between factors
    Contact angle${{f} }_{\text{a} }^{\text{}\text{C} }$${{f} }_{\text{a} }{\text{}{'} }$${{f} }_{\text{a} }^{\text{}\text{H} }$${{f} }_{\text{a} }^{\text{}\text{N} }$${{f} }_{\text{a} }^{\text{}\text{P} }$${{f} }_{\text{a} }^{\text{}\text{S} }$${{f} }_{\text{a} }^{\text{}\text{B} }$${{f} }_{\text{al} }^{\text{}\text{*} }$${{f} }_{\text{al} }^{\text{}\text{H} }$${{f} }_{\text{al} }^{\text{}\text{O} }$
    Contact angle1?0.661?0.967?0.942?0.9810.442?0.637?0.9880.9890.9900.247
    下載: 導出CSV

    表  6  OP?10作用下的煤塵FTIR結構參數與潤濕性的相關性分析

    Table  6.   Correlation analysis of FTIR structural parameters and wettability of OP?10

    Correlation factorsCorrelation between factors
    Contact angleAromatic hydrocarbonAliphatic hydrocarbonC—OC=O—O——OH—COO—
    Contact angle10.687?0.8670.6840.6880.5640.299?0.997
    下載: 導出CSV

    表  7  煤塵潤濕性主要影響因素

    Table  7.   Main impact factors of coal dust wettability

    SurfactantInfluencing factors (13C?NMR parameters)Influencing factors (FTIR parameters)
    OP?10${{f} }_{\text{a} }^{\text{}\text{B} }$(?)${{f} }_{\text{al} }^{\text{}\text{H} }$(+)—COO—(?)*Aliphatic hydrocarbon (?)
    Rapid penetrant T${{f} }_{\text{a} }^{\text{}\text{P} }$(?)*${{f} }_{\text{a} }^{\text{}\text{S} }$(+)—O—(+)—OH(?)
    1631${{f} }_{\text{a} }^{\text{}\text{S} }$(?)${{f} }_{\text{a} }^{\text{}\text{B} }$(?)C=O(+)—O—(?)
    下載: 導出CSV
    久色视频
  • [1] Chatterjee S, Dash A, Bandopadhyay S. Ensemble support vector machine algorithm for reliability estimation of a mining machine. Qual Reliab Eng Int, 2015, 31(8): 1503 doi: 10.1002/qre.1686
    [2] Liu S H, Cheng Y F, Meng X R, et al. Influence of particle size polydispersity on coal dust explosibility. J Loss Prev Process Ind, 2018, 56: 444 doi: 10.1016/j.jlp.2018.10.005
    [3] Dodson J, Li X Q, Sun N, et al. Use of coal in the bronze age in China. Holocene, 2014, 24(5): 525 doi: 10.1177/0959683614523155
    [4] Weng A Q, Yuan S J, Wang X N, et al. Study on application of surfactant compound in coal seam water injection for dust reduction. China Saf Sci J, 2020, 30(10): 90

    翁安琦, 袁樹杰, 王曉楠, 等. 煤層注水降塵中表面活性劑復配應用研究. 中國安全科學學報, 2020, 30(10):90
    [5] Tao Z, Wu L M, Zhang Y F, et al. Preparation and properties of biomass porous carbon composite phase change materials. Chin J Eng, 2020, 42(1): 113

    陶璋, 伍玲梅, 張亞飛, 等. 生物質多孔碳基復合相變材料制備及性能. 工程科學學報, 2020, 42(1):113
    [6] Yin S H, Wang L M, Wu A X, et al. Progress of research in copper bioleaching technology in China. Chin J Eng, 2019, 41(2): 143

    尹升華, 王雷鳴, 吳愛祥, 等. 我國銅礦微生物浸出技術的研究進展. 工程科學學報, 2019, 41(2):143
    [7] Zhao Z B, Yang C, Sun C Y, et al. Experimental study of coal dust wettability. J China Coal Soc, 2011, 36(3): 442

    趙振保, 楊晨, 孫春燕, 等. 煤塵潤濕性的實驗研究. 煤炭學報, 2011, 36(3):442
    [8] Cheng W M, Xue J, Zhou G, et al. Study of coal dust wettability based on FTIR. J China Coal Soc, 2014, 39(11): 2256

    程衛民, 薛嬌, 周剛, 等. 基于紅外光譜的煤塵潤濕性. 煤炭學報, 2014, 39(11):2256
    [9] Zhou G, Cheng W M, Xu C C, et al. Characteristic analysis of 13C-NMR for the wettability difference of coal dust with diverse degrees of metamorphism. J China Coal Soc, 2015, 40(12): 2849

    周剛, 程衛民, 徐翠翠, 等. 不同變質程度煤塵潤濕性差異的13C-NMR特征解析. 煤炭學報, 2015, 40(12):2849
    [10] Xu H H, Li M, Shu X Q, et al. Analysis on moist performance measuring technology of coal dust. Coal Sci Technol, 2009, 37(10): 47

    徐海宏, 李滿, 舒新前, 等. 煤塵潤濕性能測試技術分析. 煤炭科學技術, 2009, 37(10):47
    [11] Wang S Q, Tang Y G, Chen H, et al. Chemical structural transformations of different coal components at the similar coal rank by HRTEM in situ heating. Fuel, 2018, 218: 140 doi: 10.1016/j.fuel.2018.01.024
    [12] Guo D Y, Ye J W, Wang Q B, et al. FTIR and 13C NMR characterizations for deformed coal in Pingdingshan mining. J China Coal Soc, 2016, 41(12): 3040

    郭德勇, 葉建偉, 王啟寶, 等. 平頂山礦區構造煤傅里葉紅外光譜和13C核磁共振研究. 煤炭學報, 2016, 41(12):3040
    [13] Zhou G, Xu C C, Qiu H. Analysis of the low wettability about the bituminous coal dust with medium metamorphic grade based on NMR and XPS experiment. Chem Ind Eng Prog, 2016, 35(11): 3441

    周剛, 徐翠翠, 邱晗. 基于核磁-能譜實驗的中變質煙煤煤塵低潤濕性分析. 化工進展, 2016, 35(11):3441
    [14] Ping A, Xia W C, Peng Y L, et al. Construction of bituminous coal vitrinite and inertinite molecular assisted by 13C-NMR, FTIR and XPS. J Mol Struct, 2020, 1222: 128959 doi: 10.1016/j.molstruc.2020.128959
    [15] Yao Q G, Xu C C, Zhang Y S, et al. Micromechanism of coal dust wettability and its effect on the selection and development of dust suppressants. Process Saf Environ Prot, 2017, 111: 726 doi: 10.1016/j.psep.2017.08.037
    [16] Qin T, Jiang S G, Zhang W Q. Research progress on coal wettability. Saf Coal Mines, 2017, 48(9): 163

    秦桐, 蔣曙光, 張衛清. 煤的潤濕性研究進展. 煤礦安全, 2017, 48(9):163
    [17] Zheng L, Liu Z Q, Li D W, et al. Micromechanism analysis of surfactant wetting of coal based on 13C NMR experiments. ACS Omega, 2021, 6(2): 1378 doi: 10.1021/acsomega.0c05005
    [18] Su X B, Si Q, Song J X. Characteristics of coal Raman spectrum. J China Coal Soc, 2016, 41(5): 1197

    蘇現波, 司青, 宋金星. 煤的拉曼光譜特征. 煤炭學報, 2016, 41(5):1197
    [19] Fan S L, Li Y B, Song D Y, et al. Macromolecular structure evolution mechanism of tectonically deformed coal under different deformation mechanisms. Coal Sci Technol, 2019, 47(11): 239

    范順利, 李云波, 宋黨育, 等. 不同變形機制下構造煤大分子結構演化機理. 煤炭科學技術, 2019, 47(11):239
    [20] An W B, Wang L G. Mechanical properties and modification of coal under the action of surfactant. J China Coal Soc, 2020, 45(12): 4074

    安文博, 王來貴. 表面活性劑作用下煤體力學特性及改性規律. 煤炭學報, 2020, 45(12):4074
    [21] Cheng W M, Xu C C, Zhou G. Evolution law of carbon and oxygen groups on coal surface with increasing metamorphic grade and its effect on wettability. J Fuel Chem Technol, 2016, 44(3): 295 doi: 10.3969/j.issn.0253-2409.2016.03.006

    程衛民, 徐翠翠, 周剛. 煤塵表面碳、氧基團隨變質增加的演化規律及其對潤濕性的影響. 燃料化學學報, 2016, 44(3):295 doi: 10.3969/j.issn.0253-2409.2016.03.006
    [22] Wang P F, Tan X H, Zhang L Y, et al. Influence of particle diameter on the wettability of coal dust and the dust suppression efficiency via spraying. Process Saf Environ Prot, 2019, 132: 189 doi: 10.1016/j.psep.2019.09.031
    [23] Feng L, Zhao G Y, Zhao Y Y, et al. Construction of the molecular structure model of the Shengli lignite using TG-GC/MS and FTIR spectrometry data. Fuel, 2017, 203: 924 doi: 10.1016/j.fuel.2017.04.112
    [24] Liu J X, Jiang Y Z, Yao W, et al. Molecular characterization of Henan anthracite coal. Energy Fuels, 2019, 33(7): 6215 doi: 10.1021/acs.energyfuels.9b01061
    [25] Ma R J, Zhang S, Hou D D, et al. Model construction and optimization of molecule structure of high-rank coal in Feng County, Shaanxi Province. J China Coal Soc, 2019, 44(6): 1827

    馬汝嘉, 張帥, 侯丹丹, 等. 陜西鳳縣高煤級煤分子結構模型的構建與結構優化. 煤炭學報, 2019, 44(6):1827
    [26] Guo D Y, Guo X J, Liu Q J, et al. Study of molecular structure evolution and dynamic metamorphism of bituminous deformed coal. J China Univ Min Technol, 2019, 48(5): 1036

    郭德勇, 郭曉潔, 劉慶軍, 等. 煙煤級構造煤分子結構演化及動力變質作用研究. 中國礦業大學學報, 2019, 48(5):1036
    [27] Hao P Y, Meng Y J, Zeng F G, et al. Quantitative study of chemical structures of different rank coals based on infrared spectroscopy. Spectrosc Spectr Anal, 2020, 40(3): 787

    郝盼云, 孟艷軍, 曾凡桂, 等. 紅外光譜定量研究不同煤階煤的化學結構. 光譜學與光譜分析, 2020, 40(3):787
    [28] Zhang L, Li B, Xia Y C, et al. Wettability modification of Wender lignite by adsorption of dodecyl poly ethoxylated surfactants with different degree of ethoxylation: A molecular dynamics simulation study. J Mol Graph Model, 2017, 76: 106 doi: 10.1016/j.jmgm.2017.06.028
    [29] Wang X N, Yuan S J, Jiang B Y. Experimental investigation of the wetting ability of surfactants to coals dust based on physical chemistry characteristics of the different coal samples. Adv Powder Technol, 2019, 30(8): 1696 doi: 10.1016/j.apt.2019.05.021
    [30] Li J Y, Li K Q. Influence factors of coal surface wettability. J China Coal Soc, 2016, 41(Suppl 2): 448

    李嬌陽, 李凱琦. 煤表面潤濕性的影響因素. 煤炭學報, 2016, 41(增刊2): 448
  • 加載中
圖(6) / 表(7)
計量
  • 文章訪問數:  454
  • HTML全文瀏覽量:  309
  • PDF下載量:  38
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-03-23
  • 網絡出版日期:  2021-06-25
  • 刊出日期:  2022-11-01

目錄

    /

    返回文章
    返回