-
摘要: 為從微觀角度研究煤塵潤濕性影響因素,探究分子結構參數與煤塵潤濕性之間的定量關系,選取3種不同煤階的煤樣進行煤質特征分析以及煤塵潤濕性接觸角測定,同時通過13C核磁共振(13C?NMR)和紅外光譜(FTIR)實驗,獲得了煤分子結構參數,利用SPSS進行煤分子結構參數與接觸角的相關性分析,最后,通過MATLAB進行在3種不同類型表面活性劑作用下的煤塵潤濕性定量表征方程的構建。結果表明:在不同類型表面活性劑的作用下,影響煤塵潤濕性的主要因素不同,主要為: 13C?NMR結構參數中的季碳、亞甲基和次甲基(
${{f}}_{\text{al}}^{\text{H}}$ )、酚或芳醚碳(${{f}}_{\text{a}}^{\text{P}}$ )、橋接芳碳(${{f}}_{\text{a}}^{\text{B}}$ ),FTIR結構參數中的酯基(?COO?)、醚基(?O?)、羰基(C=O),可依據構建的定量表征方程,利用煤塵微觀分子結構數據,快速進行煤塵潤濕性的表征,進一步豐富了煤塵潤濕的微觀機理。Abstract: Improving the wettability of coal dust is commonly used for dust control in coal mines. The wettability of coal dust can be affected by various factors. This study aims to explore the quantitative relationship between coal dust molecular structure parameters and wettability at a micro level. We selected three samples with different coal ranks, which were labeled as the Shangwan nonstick coal (BN), Zhaolou gas-fast coal (QF), and Yangquan anthracite coal (WY) respectively, and were crushed to coal dust with a particle size of less than 200 mesh (74 μm). Three different types of surfactants, i.e., alkylphenol polyoxyethylene ether (OP-10), sodium diethylhexyl sulfosuccinate (rapid penetrant T), and hexadecyl trimethyl ammonium-chloride (1631), were used for wetting coal dust. Carbon-13 nuclear magnetic resonance (13C-NMR) and infrared spectroscopy (FTIR) tests were conducted to obtain the microscopic molecular structure parameters of the coal samples. Then the relativity between the contact angle and 13C-NMR structural parameters/FTIR structural parameters were analyzed via the SPSS software to determine the principal factors. Finally, quantitative characterization equations describing the relationship between the wettability and molecular structure parameters of the studied samples were established through multiple linear regressions. Results revealed that under the action of different surfactants, the main factors affecting the wettability of coal dust are different. These factors mainly include quaternary carbon (${{f}}_{\text{al}}^{\text{}\text{H}}$ ), oxygen-connecting aliphatic carbon (${{f}}_{\text{a}}^{\text{}\text{P}}$ ), and aromatic bridge carbon (${{f}}_{\text{a}}^{\text{}\text{B}}$ ) in 13C?NMR experiments and the ester group (?COO?), ether group (?O?), and carbonyl group (C=O) in FTIR experiments. The quantitative characterization equations established in this study provide a micro insight to understanding the affecting mechanism of coal dust wettability, which could facilitate the selection of surfactants and improve the reduction efficiency of coal dust.-
Key words:
- coal dust /
- wettability /
- 13C?NMR /
- FTIR /
- quantitative characterization
-
圖 3 煤樣碳結構參數變化。(a)
${{f}}_{\text{a}}$ 、${{f}}_{\text{a}}^{\text{}\text{C}}$ ;(b)${{f}}_{\text{a}}^{\text{}\text{H}}$ 、${{f}}_{\text{a}}^{\text{}\text{N}}$ ;(c)${{f}}_{\text{a}}^{\text{}\text{P}}$ 、${{f}}_{\text{a}}^{\text{}\text{S}}$ 、${{f}}_{\text{a}}^{\text{}\text{B}}$ ;(d)${{f}}_{\text{al}}^{\text{}\text{*}}$ 、${{f}}_{\text{al}}^{\text{}\text{H}}$ 、${{f}}_{\text{al}}^{\text{}\text{O}}$ Figure 3. Carbon structural parameters chart of coal dust: (a)
${{f}}_{\text{a}}$ ,${{f}}_{\text{a}}^{\text{}\text{C}}$ ; (b)${{f}}_{\text{a}}^{\text{}\text{H}}$ ,${{f}}_{\text{a}}^{\text{}\text{N}}$ ; (c)${{f}}_{\text{a}}^{\text{}\text{P}}$ ,${{f}}_{\text{a}}^{\text{}\text{S}}$ ,${{f}}_{\text{a}}^{\text{}\text{B}}$ ; (d)${{f}}_{\text{al}}^{\text{}\text{*}}$ ,${\text{}{f}}_{\text{al}}^{\text{}\text{H}}$ ,${{f}}_{\text{al}}^{\text{}\text{O}}$ 圖 5 不粘煤、氣肥煤、無煙煤的FTIR分峰圖。(a)不粘煤FTIR分峰圖:波數為700~900 cm?1;(b)不粘煤FTIR分峰圖:波數為1000~1800 cm?1;(c)不粘煤FTIR分峰圖:波數為2800~3000 cm?1;(d)氣肥煤FTIR分峰圖:波數為700~900 cm?1;(e)氣肥煤FTIR分峰圖:波數為1000~1800 cm?1;(f)氣肥煤FTIR分峰圖:波數為2800~3000 cm?1;(g)無煙煤FTIR分峰圖:波數為700~900 cm?1;(h)無煙煤FTIR分峰圖:波數為1000~1800 cm?1;(i)無煙煤FTIR分峰圖:波數為2800~3000 cm?1
Figure 5. FTIR peak fitting diagram of BN, QF and WY:(a) FTIR peak fitting diagram of BN with wave number of 700–900 cm?1; (b) FTIR peak fitting diagram of BN with wave number of 1000–1800 cm?1; (c) FTIR peak fitting diagram of BN with wave number of 2800–3000 cm?1; (d) FTIR peak fitting diagram of QF with wave number of 700–900 cm?1; (e) FTIR peak fitting diagram of QF with wave number of 1000–1800 cm?1; (f) FTIR peak fitting diagram of QF with wave number of 2800–3000 cm?1; (g) FTIR peak fitting diagram of WY with wave number of 700–900 cm?1; (h) FTIR peak fitting diagram of WY with wave number of 1000–1800 cm?1; (i) FTIR peak fitting diagram of WY with wave number of 2800–3000 cm?1
表 1 煤樣的工業分析和元素分析(質量分數)
Table 1. Industry analysis and elementary analysis of the coal sample
% Coal sample Industry analysis Elemental analysis Mad Ad Vdaf FCad Cdaf Odaf Hdaf Ndaf Sdaf BN 4.83 2.56 32.93 59.68 81.50 10.6 5.48 1.51 0.65 QF 1.57 7.76 31.62 59.05 82.71 9.61 5.35 1.70 0.58 WY 1.25 7.30 20. 50 70.95 92.35 2.27 3.51 0.91 0.80 表 2 煤塵潤濕性接觸角測定結果
Table 2. Results of wettability contact angle measurement of coal dust
Coal sample Contact angle /(°) Distilled water OP?10 Rapid penetrant T 1631 BN 52.73 22.16 11.56 42.35 QF 68.16 27.17 13.78 40.27 WY 74.98 13.29 14.98 26.36 表 3 煤樣13C?NMR結構參數表
Table 3. NMR structure parameters of coal dust
Coal sample $ {f}_{\text{a}} $ ${{f} }_{\text{a} }^{\text{}\text{C} }$ ${ {f} }_{\text{a} }{\text{}{'}\text{} }$ ${{f} }_{\text{a} }^{\text{}\text{H} }$ ${{f} }_{\text{a} }^{\text{}\text{N} }$ ${{f} }_{\text{a} }^{\text{}\text{B} }$ ${{f} }_{\text{a} }^{\text{}\text{S} }$ ${{f} }_{\text{a} }^{\text{}\text{P} }$ ${{f} }_{\text{al} }$ ${{f} }_{\text{al} }^{\text{}\text{*} }$ ${{f} }_{\text{al} }^{\text{}\text{H} }$ ${{f} }_{\text{al} }^{\text{}\text{O} }$ BN 0.818 0.029 0.789 0.544 0.245 0.149 0 0.095 0.182 0.066 0.115 0.001 QF 0.679 0.012 0.667 0.476 0.191 0.128 0.034 0.029 0.321 0.089 0.191 0.041 WY 0.898 0.026 0.872 0.579 0.293 0.224 0.069 0 0.102 0.042 0.035 0.025 表 4 各煤樣紅外結構參數含量
Table 4. Infrared structure parameter content of each coal sample
% Coal sample Infrared structure parameter content of coal sample Aromatic hydrocarbon Aliphatic hydrocarbon C?O C=O ?O? ?OH ?COO? BN 3.957 1.677 1.925 5.095 5.327 1.069 0.060 QF 11.270 7.367 8.591 2.916 2.422 0.622 0.091 WY 4.984 0.497 2.890 0.073 0.250 0.540 0.142 表 5 OP?10作用下的煤樣13C?NMR結構參數與潤濕性相關性分析
Table 5. Correlation analysis of 13C?NMR structural parameters and wettability of OP?10
Correlation factors Correlation between factors Contact angle ${{f} }_{\text{a} }^{\text{}\text{C} }$ ${{f} }_{\text{a} }{\text{}{'} }$ ${{f} }_{\text{a} }^{\text{}\text{H} }$ ${{f} }_{\text{a} }^{\text{}\text{N} }$ ${{f} }_{\text{a} }^{\text{}\text{P} }$ ${{f} }_{\text{a} }^{\text{}\text{S} }$ ${{f} }_{\text{a} }^{\text{}\text{B} }$ ${{f} }_{\text{al} }^{\text{}\text{*} }$ ${{f} }_{\text{al} }^{\text{}\text{H} }$ ${{f} }_{\text{al} }^{\text{}\text{O} }$ Contact angle 1 ?0.661 ?0.967 ?0.942 ?0.981 0.442 ?0.637 ?0.988 0.989 0.990 0.247 表 6 OP?10作用下的煤塵FTIR結構參數與潤濕性的相關性分析
Table 6. Correlation analysis of FTIR structural parameters and wettability of OP?10
Correlation factors Correlation between factors Contact angle Aromatic hydrocarbon Aliphatic hydrocarbon C—O C=O —O— —OH —COO— Contact angle 1 0.687 ?0.867 0.684 0.688 0.564 0.299 ?0.997 表 7 煤塵潤濕性主要影響因素
Table 7. Main impact factors of coal dust wettability
Surfactant Influencing factors (13C?NMR parameters) Influencing factors (FTIR parameters) OP?10 ${{f} }_{\text{a} }^{\text{}\text{B} }$(?) ${{f} }_{\text{al} }^{\text{}\text{H} }$(+) —COO—(?)* Aliphatic hydrocarbon (?) Rapid penetrant T ${{f} }_{\text{a} }^{\text{}\text{P} }$(?)* ${{f} }_{\text{a} }^{\text{}\text{S} }$(+) —O—(+) —OH(?) 1631 ${{f} }_{\text{a} }^{\text{}\text{S} }$(?) ${{f} }_{\text{a} }^{\text{}\text{B} }$(?) C=O(+) —O—(?) -
參考文獻
[1] Chatterjee S, Dash A, Bandopadhyay S. Ensemble support vector machine algorithm for reliability estimation of a mining machine. Qual Reliab Eng Int, 2015, 31(8): 1503 doi: 10.1002/qre.1686 [2] Liu S H, Cheng Y F, Meng X R, et al. Influence of particle size polydispersity on coal dust explosibility. J Loss Prev Process Ind, 2018, 56: 444 doi: 10.1016/j.jlp.2018.10.005 [3] Dodson J, Li X Q, Sun N, et al. Use of coal in the bronze age in China. Holocene, 2014, 24(5): 525 doi: 10.1177/0959683614523155 [4] Weng A Q, Yuan S J, Wang X N, et al. Study on application of surfactant compound in coal seam water injection for dust reduction. China Saf Sci J, 2020, 30(10): 90翁安琦, 袁樹杰, 王曉楠, 等. 煤層注水降塵中表面活性劑復配應用研究. 中國安全科學學報, 2020, 30(10):90 [5] Tao Z, Wu L M, Zhang Y F, et al. Preparation and properties of biomass porous carbon composite phase change materials. Chin J Eng, 2020, 42(1): 113陶璋, 伍玲梅, 張亞飛, 等. 生物質多孔碳基復合相變材料制備及性能. 工程科學學報, 2020, 42(1):113 [6] Yin S H, Wang L M, Wu A X, et al. Progress of research in copper bioleaching technology in China. Chin J Eng, 2019, 41(2): 143尹升華, 王雷鳴, 吳愛祥, 等. 我國銅礦微生物浸出技術的研究進展. 工程科學學報, 2019, 41(2):143 [7] Zhao Z B, Yang C, Sun C Y, et al. Experimental study of coal dust wettability. J China Coal Soc, 2011, 36(3): 442趙振保, 楊晨, 孫春燕, 等. 煤塵潤濕性的實驗研究. 煤炭學報, 2011, 36(3):442 [8] Cheng W M, Xue J, Zhou G, et al. Study of coal dust wettability based on FTIR. J China Coal Soc, 2014, 39(11): 2256程衛民, 薛嬌, 周剛, 等. 基于紅外光譜的煤塵潤濕性. 煤炭學報, 2014, 39(11):2256 [9] Zhou G, Cheng W M, Xu C C, et al. Characteristic analysis of 13C-NMR for the wettability difference of coal dust with diverse degrees of metamorphism. J China Coal Soc, 2015, 40(12): 2849周剛, 程衛民, 徐翠翠, 等. 不同變質程度煤塵潤濕性差異的13C-NMR特征解析. 煤炭學報, 2015, 40(12):2849 [10] Xu H H, Li M, Shu X Q, et al. Analysis on moist performance measuring technology of coal dust. Coal Sci Technol, 2009, 37(10): 47徐海宏, 李滿, 舒新前, 等. 煤塵潤濕性能測試技術分析. 煤炭科學技術, 2009, 37(10):47 [11] Wang S Q, Tang Y G, Chen H, et al. Chemical structural transformations of different coal components at the similar coal rank by HRTEM in situ heating. Fuel, 2018, 218: 140 doi: 10.1016/j.fuel.2018.01.024 [12] Guo D Y, Ye J W, Wang Q B, et al. FTIR and 13C NMR characterizations for deformed coal in Pingdingshan mining. J China Coal Soc, 2016, 41(12): 3040郭德勇, 葉建偉, 王啟寶, 等. 平頂山礦區構造煤傅里葉紅外光譜和13C核磁共振研究. 煤炭學報, 2016, 41(12):3040 [13] Zhou G, Xu C C, Qiu H. Analysis of the low wettability about the bituminous coal dust with medium metamorphic grade based on NMR and XPS experiment. Chem Ind Eng Prog, 2016, 35(11): 3441周剛, 徐翠翠, 邱晗. 基于核磁-能譜實驗的中變質煙煤煤塵低潤濕性分析. 化工進展, 2016, 35(11):3441 [14] Ping A, Xia W C, Peng Y L, et al. Construction of bituminous coal vitrinite and inertinite molecular assisted by 13C-NMR, FTIR and XPS. J Mol Struct, 2020, 1222: 128959 doi: 10.1016/j.molstruc.2020.128959 [15] Yao Q G, Xu C C, Zhang Y S, et al. Micromechanism of coal dust wettability and its effect on the selection and development of dust suppressants. Process Saf Environ Prot, 2017, 111: 726 doi: 10.1016/j.psep.2017.08.037 [16] Qin T, Jiang S G, Zhang W Q. Research progress on coal wettability. Saf Coal Mines, 2017, 48(9): 163秦桐, 蔣曙光, 張衛清. 煤的潤濕性研究進展. 煤礦安全, 2017, 48(9):163 [17] Zheng L, Liu Z Q, Li D W, et al. Micromechanism analysis of surfactant wetting of coal based on 13C NMR experiments. ACS Omega, 2021, 6(2): 1378 doi: 10.1021/acsomega.0c05005 [18] Su X B, Si Q, Song J X. Characteristics of coal Raman spectrum. J China Coal Soc, 2016, 41(5): 1197蘇現波, 司青, 宋金星. 煤的拉曼光譜特征. 煤炭學報, 2016, 41(5):1197 [19] Fan S L, Li Y B, Song D Y, et al. Macromolecular structure evolution mechanism of tectonically deformed coal under different deformation mechanisms. Coal Sci Technol, 2019, 47(11): 239范順利, 李云波, 宋黨育, 等. 不同變形機制下構造煤大分子結構演化機理. 煤炭科學技術, 2019, 47(11):239 [20] An W B, Wang L G. Mechanical properties and modification of coal under the action of surfactant. J China Coal Soc, 2020, 45(12): 4074安文博, 王來貴. 表面活性劑作用下煤體力學特性及改性規律. 煤炭學報, 2020, 45(12):4074 [21] Cheng W M, Xu C C, Zhou G. Evolution law of carbon and oxygen groups on coal surface with increasing metamorphic grade and its effect on wettability. J Fuel Chem Technol, 2016, 44(3): 295 doi: 10.3969/j.issn.0253-2409.2016.03.006程衛民, 徐翠翠, 周剛. 煤塵表面碳、氧基團隨變質增加的演化規律及其對潤濕性的影響. 燃料化學學報, 2016, 44(3):295 doi: 10.3969/j.issn.0253-2409.2016.03.006 [22] Wang P F, Tan X H, Zhang L Y, et al. Influence of particle diameter on the wettability of coal dust and the dust suppression efficiency via spraying. Process Saf Environ Prot, 2019, 132: 189 doi: 10.1016/j.psep.2019.09.031 [23] Feng L, Zhao G Y, Zhao Y Y, et al. Construction of the molecular structure model of the Shengli lignite using TG-GC/MS and FTIR spectrometry data. Fuel, 2017, 203: 924 doi: 10.1016/j.fuel.2017.04.112 [24] Liu J X, Jiang Y Z, Yao W, et al. Molecular characterization of Henan anthracite coal. Energy Fuels, 2019, 33(7): 6215 doi: 10.1021/acs.energyfuels.9b01061 [25] Ma R J, Zhang S, Hou D D, et al. Model construction and optimization of molecule structure of high-rank coal in Feng County, Shaanxi Province. J China Coal Soc, 2019, 44(6): 1827馬汝嘉, 張帥, 侯丹丹, 等. 陜西鳳縣高煤級煤分子結構模型的構建與結構優化. 煤炭學報, 2019, 44(6):1827 [26] Guo D Y, Guo X J, Liu Q J, et al. Study of molecular structure evolution and dynamic metamorphism of bituminous deformed coal. J China Univ Min Technol, 2019, 48(5): 1036郭德勇, 郭曉潔, 劉慶軍, 等. 煙煤級構造煤分子結構演化及動力變質作用研究. 中國礦業大學學報, 2019, 48(5):1036 [27] Hao P Y, Meng Y J, Zeng F G, et al. Quantitative study of chemical structures of different rank coals based on infrared spectroscopy. Spectrosc Spectr Anal, 2020, 40(3): 787郝盼云, 孟艷軍, 曾凡桂, 等. 紅外光譜定量研究不同煤階煤的化學結構. 光譜學與光譜分析, 2020, 40(3):787 [28] Zhang L, Li B, Xia Y C, et al. Wettability modification of Wender lignite by adsorption of dodecyl poly ethoxylated surfactants with different degree of ethoxylation: A molecular dynamics simulation study. J Mol Graph Model, 2017, 76: 106 doi: 10.1016/j.jmgm.2017.06.028 [29] Wang X N, Yuan S J, Jiang B Y. Experimental investigation of the wetting ability of surfactants to coals dust based on physical chemistry characteristics of the different coal samples. Adv Powder Technol, 2019, 30(8): 1696 doi: 10.1016/j.apt.2019.05.021 [30] Li J Y, Li K Q. Influence factors of coal surface wettability. J China Coal Soc, 2016, 41(Suppl 2): 448李嬌陽, 李凱琦. 煤表面潤濕性的影響因素. 煤炭學報, 2016, 41(增刊2): 448 -