<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于UDEC-GBM的礦物晶粒解理特征對硬巖石破壞過程的影響

胡小川 丁學正 蘇國韶 廖滿平

胡小川, 丁學正, 蘇國韶, 廖滿平. 基于UDEC-GBM的礦物晶粒解理特征對硬巖石破壞過程的影響[J]. 工程科學學報, 2022, 44(7): 1160-1170. doi: 10.13374/j.issn2095-9389.2020.12.10.002
引用本文: 胡小川, 丁學正, 蘇國韶, 廖滿平. 基于UDEC-GBM的礦物晶粒解理特征對硬巖石破壞過程的影響[J]. 工程科學學報, 2022, 44(7): 1160-1170. doi: 10.13374/j.issn2095-9389.2020.12.10.002
HU Xiao-chuan, DING Xue-zheng, SU Guo-shao, LIAO Man-ping. Effect of cleavage characteristics of mineral grains on the failure process of hard rock based on UDEC-GBM modeling[J]. Chinese Journal of Engineering, 2022, 44(7): 1160-1170. doi: 10.13374/j.issn2095-9389.2020.12.10.002
Citation: HU Xiao-chuan, DING Xue-zheng, SU Guo-shao, LIAO Man-ping. Effect of cleavage characteristics of mineral grains on the failure process of hard rock based on UDEC-GBM modeling[J]. Chinese Journal of Engineering, 2022, 44(7): 1160-1170. doi: 10.13374/j.issn2095-9389.2020.12.10.002

基于UDEC-GBM的礦物晶粒解理特征對硬巖石破壞過程的影響

doi: 10.13374/j.issn2095-9389.2020.12.10.002
基金項目: 國家自然科學基金資助項目(51869003);水利工程巖石力學廣西高等學校高水平創新團隊及卓越學者計劃資助項目(202006)
詳細信息
    通訊作者:

    E-mail: guoshaosu@gxu.edu.cn

  • 中圖分類號: TV314

Effect of cleavage characteristics of mineral grains on the failure process of hard rock based on UDEC-GBM modeling

More Information
  • 摘要: 基于塊體離散單元數值模擬方法(UDEC-GBM),以鉀長石礦物顆粒為例,詳細研究了礦物晶粒解理傾角、解理傾角圍壓效應及解理間距對硬質巖石力學性質、微觀開裂過程及機理的影響,并探討了解理特征在工程實際中可能帶來的影響。數值研究結果表明:(1)晶粒解理具有明顯傾角效應,當解理傾角由0°增加到90°時,巖石的彈性模量、單軸壓縮強度及峰后脆延特征都會發生變化,穿晶總裂紋數受影響明顯,主要體現在鉀長石張拉穿晶裂紋顯著增加,鉀長石剪切裂紋數量在60°增加到最大值后減少,石英穿晶張拉裂紋數量也有明顯變化,總體而言不斷增加,而沿晶裂紋數量呈減少趨勢,整個開裂過程仍以張拉沿晶主導;(2)晶粒解理傾角效應受圍壓影響,圍壓會導致沿晶裂紋和穿晶裂紋數量和二者比值發生變化,但不同傾角下圍壓對沿晶裂紋和穿晶裂紋數量和比值變化影響不一樣;(3)當解理間距由2 mm增加到4 mm時,穿晶裂紋數量有增加趨勢,而沿晶裂紋數量減少,總剪切和張拉裂紋數量比值不變,對巖石微觀張拉、剪切破壞機制無明顯影響。此外,具有解理結構的礦物晶粒含量較高且礦物晶粒本身性質對巖石性質及響應影響顯著時,解理特征對板裂、巖爆等破壞的影響應給予重視。

     

  • 圖  1  巖石材料

    Figure  1.  Rock material

    圖  2  Voronoi模型和Trigon模型破壞路徑比較

    Figure  2.  Comparison of potential failure paths between the Voronoi model and Trigon model

    圖  3  模型配置

    Figure  3.  Model configuration

    圖  4  本構關系

    Figure  4.  Constitutive relationship

    圖  5  應力–應變曲線對比

    Figure  5.  Comparison of stress–strain curves

    圖  6  破壞結果。(a)數值試件;(b)微觀裂紋;(c)物理試驗

    Figure  6.  Failure results: (a) numerical specimen; (b) microcracks; (c) physical test

    圖  7  數值模型。(a)數值試件;(b)內部礦物晶粒;(c)解理傾角和間距定義

    Figure  7.  Numerical model: (a) numerical specimen; (b) mineral grains; (c) definition of cleavage angle and spacing

    圖  8  不同解理傾角下單軸應力–應變曲線

    Figure  8.  Uniaxial stress–strain curves at different cleavage angles

    圖  9  單軸抗壓強度和彈性模量

    Figure  9.  Uniaxial compressive strength and elastic modulus

    圖  10  90°解理傾角下總裂紋演化過程(T和S分別代表張拉和剪切開裂)

    Figure  10.  Evolution of the total crack at the 90° cleavage angle (T and S indicate tensile cracking and S cracking, respectively)

    圖  11  穿晶裂紋和沿晶裂紋數量

    Figure  11.  Number of trans- and intergranular cracks

    圖  12  微裂紋比例與解理傾角關系

    Figure  12.  Relationship between the crack ratio and cleavage angle

    圖  13  不同類型穿晶裂紋數量(T和S分別代表張拉和剪切開裂)

    Figure  13.  Number of different transgranular cracks (T and S indicate tensile cracking and S cracking, respectively)

    圖  14  不同解理傾角下宏觀破壞。(a)0°;(b)20°;(c)40°;(d)60°;(e)90°;(f)單軸壓縮試驗結果

    Figure  14.  Macroscopic failure at different cleavage angles: (a) 0°; (b) 20°; (c) 40°; (d) 60°; (e) 90°; (f) test result under uniaxial compression

    圖  15  應力–應變曲線(3 MPa)

    Figure  15.  Stress–strain curves at 3 MPa

    圖  16  三軸抗壓強度和彈性模量

    Figure  16.  Triaxial compressive strength and elastic modulus

    圖  17  3 MPa時穿晶裂紋數量分布

    Figure  17.  Number of transgranular cracks at 3 MPa

    圖  18  0 MPa時不同類型穿晶裂紋占總穿晶裂紋比例

    Figure  18.  Ratio of different types of transgranular cracks to the total transgranular cracks at 0 MPa

    圖  19  3 MPa時不同類型穿晶裂紋占總穿晶裂紋比例

    Figure  19.  Ratio of different types of transgranular cracks to the total transgranular cracks at 3 MPa

    圖  20  3 MPa時穿晶裂紋和沿晶裂紋數量

    Figure  20.  Number of trans- and intergranular cracks at 3 MPa

    圖  21  3 MPa時微裂紋比例與解理傾角關系

    Figure  21.  Crack ratio at different cleavage angles (3 MPa)

    圖  22  不同解理間距下單軸應力–應變曲線

    Figure  22.  Uniaxial stress–strain curves at different cleavage spacings

    圖  23  不同解理間距下的穿晶裂紋數量

    Figure  23.  Transgranular cracks at different cleavage spacings

    圖  24  不同解理間距下的裂紋數量

    Figure  24.  Number of cracks at different cleavage spacings

    圖  25  不同解理間距下裂紋比例

    Figure  25.  Crack ratio at different cleavage spacings

    圖  26  解理對開裂的影響

    Figure  26.  Influence of cleavage on cracking

    表  1  基本物理與力學參數

    Table  1.   Basic physical and mechanical parameters

    Density/
    (kg·m?3)
    Uniaxial compressive
    strength/MPa
    Elastic modulus/
    GPa
    P, wave
    velocity/(km·s?1)
    268711532.24.5
    下載: 導出CSV

    表  2  礦物晶粒物理、力學參數

    Table  2.   Physical and mechanical parameters of grains

    Grain typePercentage/%ρ/(g·cm–3)Sh/GPaBu/GPaυ
    Q272,65044.037.00.08
    B52,85012.441.10.36
    K582,56027.253.70.28
    P102,63029.350.80.26
    Note: Q, B, K and P represent quartz, biotite, K-feldspar and plagioclase respectively; υ represents Poisson's ratio; Bu, Sh and ρ represent bulk modulus, shear plane modulus and density respectively.
    下載: 導出CSV

    表  3  加載鋼板參數

    Table  3.   Properties of the loading platens

    Bu/GPaSh/GPaρ/(kg·m?3)
    15715117857800
    下載: 導出CSV

    表  4  接觸微觀參數

    Table  4.   Microparameter of contacts

    Contact typeMicroparameter of contacts
    kn/
    (GPa·m–1)
    ks/
    (GPa·m–1)
    cp/
    MPa
    φp/
    (o)
    $ {\tau _{{\text{max}}}} $/MPa
    Q-Q7200036000803548
    B-B4174020870523535
    K-K5217526087703540
    P-P6261031305753544
    Intergranular contact3487017392504214
    Note: Intergranular parameters are uniformly set between grains, and different parameters are set inside grains (such as Q-Q); the residual cohesion, friction angle and tensile strength of intracrystalline and intergranular contact are set to 0.
    下載: 導出CSV

    表  5  參數校核結果

    Table  5.   Calibrated results of properties

    ItemE/GPaUCS/MPaσTσci/UCSσcd/UCSυ
    UDEC-GBM33.5116.50.360.860.25
    Tests32.7115.46.70.24
    Error/%2.45%0.95%4.17%
    Note: E, UCS σT, σci and σcd represent the elastic modulus, uniaxial compressive strength, crack initiation stress and damage stress of granite specimens respectively.
    下載: 導出CSV
    久色视频
  • [1] Qian Q H. Challenges faced by underground projects construction safety and countermeasures. Chin J Rock Mech Eng, 2012, 31(10): 1945 doi: 10.3969/j.issn.1000-6915.2012.10.001

    錢七虎. 地下工程建設安全面臨的挑戰與對策. 巖石力學與工程學報, 2012, 31(10):1945 doi: 10.3969/j.issn.1000-6915.2012.10.001
    [2] Cai M, Kaiser P K, Tasaka Y, et al. Generalized crack initiation and crack damage stress thresholds of brittle rock masses near underground excavations. Int J Rock Mech Min Sci, 2004, 41(5): 833 doi: 10.1016/j.ijrmms.2004.02.001
    [3] Martin C D, Christiansson R, S?derh?ll J. Rock Stability Considerations for Siting and Constructing a KBS-3 Repository: Based on Experiences from Aespoe HRL, AECL's URL, Tunnelling and Mining. Stockholm: Swedish Nuclear Fuel and Waste Management Co., 2001
    [4] Martin C D, Chandler N A. The progressive fracture of Lac du Bonnet granite. Int J Rock Mech Min Sci Geomech Abstr, 1994, 31(6): 643 doi: 10.1016/0148-9062(94)90005-1
    [5] Feng X T, Chen B R, Zhang C Q, et al. Mechanism, Warning and Dynamic Control of Rockburst Development Processes. Beijing: Science Press, 2013

    馮夏庭, 陳炳瑞, 張傳慶, 等. 巖爆孕育過程的機制、預警與動態調控. 北京: 科學出版社, 2013
    [6] Diederichs M S, Kaiser P K, Eberhardt E. Damage initiation and propagation in hard rock during tunnelling and the influence of near-face stress rotation. Int J Rock Mech Min Sci, 2004, 41(5): 785 doi: 10.1016/j.ijrmms.2004.02.003
    [7] Potyondy D. A grain-based model for rock: approaching the true microstructure // Proceedings of Rock Mechanics in the Nordic Countries. Kongsberg, 2010: 9
    [8] Jiang M J, Bai R P, Liu J D, et al. Experimental study of inter-granular particles bonding behaviors for rock microstructure. Chin J Rock Mech Eng, 2013, 32(6): 1121 doi: 10.3969/j.issn.1000-6915.2013.06.005

    蔣明鏡, 白閏平, 劉靜德, 等. 巖石微觀顆粒接觸特性的試驗研究. 巖石力學與工程學報, 2013, 32(6):1121 doi: 10.3969/j.issn.1000-6915.2013.06.005
    [9] Peng J, Wong L N Y, Teh C I. Influence of grain size heterogeneity on strength and microcracking behavior of crystalline rocks. J Geophys Res Solid Earth, 2017, 122(2): 1054 doi: 10.1002/2016JB013469
    [10] Gao F Q, Stead D. The application of a modified Voronoi logic to brittle fracture modelling at the laboratory and field scale. Int J Rock Mech Min Sci, 2014, 68: 1 doi: 10.1016/j.ijrmms.2014.02.003
    [11] He J. Clastic Rock Flake Identification Guide. Beijing: Petroleum Industry Press, 2019

    賀靜. 碎屑巖薄片鑒定指南. 北京: 石油工業出版社, 2019
    [12] Lim S S, Martin C D, ?kesson U. In-situ stress and microcracking in granite cores with depth. Eng Geol, 2012, 147-148: 1 doi: 10.1016/j.enggeo.2012.07.006
    [13] Wang X, Cai M. A comprehensive parametric study of grain-based models for rock failure process simulation. Int J Rock Mech Min Sci, 2019, 115: 60 doi: 10.1016/j.ijrmms.2019.01.008
    [14] Haimson B, Chang C. A new true triaxial cell for testing mechanical properties of rock, and its use to determine rock strength and deformability of Westerly granite. Int J Rock Mech Min Sci, 2000, 37(1-2): 285 doi: 10.1016/S1365-1609(99)00106-9
    [15] Tao M, Wang J, Li Z W, et al. Meso-and micro-experimental research on the fracture of granite spallation under impact loads. Chin J Rock Mech Eng, 2019, 38(11): 2172

    陶明, 汪軍, 李占文, 等. 沖擊荷載下花崗巖層裂斷口細–微觀試驗研究. 巖石力學與工程學報, 2019, 38(11):2172
    [16] Abdelaziz A, Zhao Q, Grasselli G. Grain based modelling of rocks using the combined finite-discrete element method. Comput Geotech, 2018, 103: 73 doi: 10.1016/j.compgeo.2018.07.003
    [17] Itasca Consulting Group Inc. UDEC (niversal Distinct Element Code). Version 6.0. Mineapolis, Itasca, 2014
    [18] Wang X, Cai M. Modeling of brittle rock failure considering inter- and intra-grain contact failures. Comput Geotech, 2018, 101: 224 doi: 10.1016/j.compgeo.2018.04.016
    [19] Gao F Q, Stead D, Elmo D. Numerical simulation of microstructure of brittle rock using a grain-breakable distinct element grain-based model. Comput Geotech, 2016, 78: 203 doi: 10.1016/j.compgeo.2016.05.019
    [20] Cho N, Martin C D, Sego D C. A clumped particle model for rock. Int J Rock Mech Min Sci, 2007, 44(7): 997 doi: 10.1016/j.ijrmms.2007.02.002
    [21] Yoon J. Application of experimental design and optimization to PFC model calibration in uniaxial compression simulation. Int J Rock Mech Min Sci, 2007, 44(6): 871 doi: 10.1016/j.ijrmms.2007.01.004
    [22] Liang Z Z, Tang C A, Li H X, et al. A numerical study on failure process of transversely isotropic rock subjected to uniaxial compression. Rock Soil Mech, 2005, 26(1): 57 doi: 10.3969/j.issn.1000-7598.2005.01.012

    梁正召, 唐春安, 李厚祥, 等. 單軸壓縮下橫觀各向同性巖石破裂過程的數值模擬. 巖土力學, 2005, 26(1):57 doi: 10.3969/j.issn.1000-7598.2005.01.012
    [23] Gong F Q, Luo Y, Li X B, et al. Experimental simulation investigation on rockburst induced by spalling failure in deep circular tunnels. Tunn Undergr Space Technol, 2018, 81: 413 doi: 10.1016/j.tust.2018.07.035
    [24] Duan K, Kwok C Y, Ma X. DEM simulations of sandstone under true triaxial compressive tests. Acta Geotech, 2017, 12(3): 495 doi: 10.1007/s11440-016-0480-6
    [25] Chen W Z, Lu S P, Guo X H, et al. Research on unloading confining pressure tests and rockburst criterion based on energy theory. Chin J Rock Mech Eng, 2009, 28(8): 1530 doi: 10.3321/j.issn:1000-6915.2009.08.003

    陳衛忠, 呂森鵬, 郭小紅, 等. 基于能量原理的卸圍壓試驗與巖爆判據研究. 巖石力學與工程學報, 2009, 28(8):1530 doi: 10.3321/j.issn:1000-6915.2009.08.003
    [26] Hu X C, Su G S, Chen G Y, et al. Experimental study on slabbing process of hard rock in deep tunnels. Chin J Geotech Eng, 2020, 42(12): 2271

    胡小川, 蘇國韶, 陳冠言, 等. 深埋隧洞硬巖板裂化過程試驗研究. 巖土工程學報, 2020, 42(12):2271
  • 加載中
圖(26) / 表(5)
計量
  • 文章訪問數:  727
  • HTML全文瀏覽量:  375
  • PDF下載量:  74
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-12-10
  • 網絡出版日期:  2021-03-02
  • 刊出日期:  2022-07-01

目錄

    /

    返回文章
    返回