<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

近距離煤層工作面煤柱合理留設與巷道圍巖控制技術

程輝 趙洪寶 張歡 徐建峰 秦逢緣

程輝, 趙洪寶, 張歡, 徐建峰, 秦逢緣. 近距離煤層工作面煤柱合理留設與巷道圍巖控制技術[J]. 工程科學學報, 2022, 44(7): 1147-1159. doi: 10.13374/j.issn2095-9389.2020.11.25.001
引用本文: 程輝, 趙洪寶, 張歡, 徐建峰, 秦逢緣. 近距離煤層工作面煤柱合理留設與巷道圍巖控制技術[J]. 工程科學學報, 2022, 44(7): 1147-1159. doi: 10.13374/j.issn2095-9389.2020.11.25.001
CHENG Hui, ZHAO Hong-bao, ZHANG Huan, XU Jian-feng, QIN Feng-yuan. Reasonable coal pillar setting and roadway surrounding rock control technology in close-distance coal seam working face[J]. Chinese Journal of Engineering, 2022, 44(7): 1147-1159. doi: 10.13374/j.issn2095-9389.2020.11.25.001
Citation: CHENG Hui, ZHAO Hong-bao, ZHANG Huan, XU Jian-feng, QIN Feng-yuan. Reasonable coal pillar setting and roadway surrounding rock control technology in close-distance coal seam working face[J]. Chinese Journal of Engineering, 2022, 44(7): 1147-1159. doi: 10.13374/j.issn2095-9389.2020.11.25.001

近距離煤層工作面煤柱合理留設與巷道圍巖控制技術

doi: 10.13374/j.issn2095-9389.2020.11.25.001
基金項目: 煤炭開采水資源保護與利用國家重點實驗室2020年開放基金課題資助項目(GJNY-20-113-18);越崎杰出學者計劃資助項目(800015Z1179);國家自然科學基金青年科學基金資助項目(52004170);中央高校基本科研業務費研究生科研創新能力提升資助項目(2020YJSNY07)
詳細信息
    通訊作者:

    E-mail: zhanghuan@tyut.edu.cn

  • 中圖分類號: TD322

Reasonable coal pillar setting and roadway surrounding rock control technology in close-distance coal seam working face

More Information
  • 摘要: 為探究近距離煤層工作面煤柱合理留設寬度以及回采巷道圍巖控制技術,以回坡底煤礦近距離煤層開采為工程背景,通過數值模擬、理論分析、現場實踐等技術手段對不同寬度條件下煤柱破壞演化過程、影響因素、底板破壞范圍以及11號煤層回采巷道圍巖控制技術進行了深入研究。研究結果表明:(1)煤柱在預留煤柱時期、區段煤柱時期、保護煤柱時期、孤島煤柱時期四個階段過程中,煤柱破壞范圍逐漸增大;煤柱彈性核占比均隨煤柱寬度的增加而增加,本煤層回采巷道隨煤柱寬度的增加從非對稱性破壞逐漸演化為對稱性破壞。煤柱破壞寬度與煤層傾角、黏聚力、煤柱寬度、內摩擦角和泊松比等因素成反比關系,只與埋深成正比關系。(2)隨著煤柱寬度增大,煤柱底板破壞寬度與深度會發生變化,且底板破壞集中在煤柱邊緣側,煤柱正下方底板破壞區域較小。(3)煤柱應力集中作用致底板下方最大主應力發生偏轉,底板任意一點與煤柱中心線的距離越大,最大主應力偏轉角度越小;隨著11號煤層巷道與煤柱邊緣距離的增大,巷道圍巖塑性區由傾斜的“X”形分布轉變為傾斜的“8”形分布,再轉化為傾斜的“O”形分布,最終轉化為橢圓形分布;離煤柱距離較近時,巷道往往出現非對稱性破壞,支護也要采取非對稱支護形式。

     

  • 圖  1  巷道開挖、工作面回采與煤柱演化過程. (a)預留煤柱時期; (b)區段煤柱時期; (c)保護煤柱時期; (d)孤島煤柱時期

    Figure  1.  Roadway excavation, working face mining, and coal pillar evolution process: (a) period of the reserved coal pillar; (b) period of the section coal pillar; (c) period of the protection coal pillar; (d) period of the isolated coal pillar

    圖  2  數值模擬幾何模型

    Figure  2.  Geometric model of numerical simulation

    圖  3  各階段煤柱破壞情況. (a) 區段煤柱; (b)保護煤柱; (c)孤島煤柱

    Figure  3.  Coal pillar failure in each stage: (a) section coal pillar; (b) protective coal pillar; (b) isolated coal pillar

    圖  4  不同煤柱寬度彈性核占比分布與塑性區結果

    Figure  4.  Distribution of the elastic core proportion and results of the plastic zone in different coal pillar widths

    圖  5  10-1032巷斷面支護(單位:mm)

    Figure  5.  10-1032 roadway section support (Unit: mm)

    圖  6  煤柱破壞分析簡化模型. (a)煤柱兩側應力分布; (b)應力恢復區簡化模型

    Figure  6.  Simplified model of the coal pillar failure analysis: (a) stress distribution on two sides of the coal pillar; (b) simplified model of the stress recovery zone

    圖  7  煤柱破壞因素分析. (a)煤層傾角; (b)黏聚力; (c)煤柱寬度; (d)內摩擦角; (e)泊松比; (f)埋深

    Figure  7.  Analysis factors of the coal pillar failure: (a) coal seam dip angle; (b) cohesion; (c) coal pillar width; (d) internal friction angle; (e) Poisson’s ratio; (f) buried depth

    圖  8  不同寬度煤柱支承壓力演化過程. (a)5 m煤柱; (b)10 m煤柱; (c)15 m煤柱; (d)20 m煤柱; (e)25 m煤柱

    Figure  8.  Evolution process of the abutment pressure of the coal pillar with different widths: (a) 5 m coal pillar; (b) 10 m coal pillar; (c) 15 m coal pillar; (d) 20 m coal pillar; (e) 25 m coal pillar

    圖  9  煤柱下方底板應力求解力學模型

    Figure  9.  Mechanical model of the floor under the coal pillar

    圖  10  煤柱下方底板破壞區域分布. (a)15 m煤柱; (b)20 m煤柱; (c)25 m煤柱

    Figure  10.  Distribution of the floor failure area under the coal pillar: (a) 15 m coal pillar; (b) 20 m coal pillar; (c) 25 m coal pillar

    圖  11  煤柱下方底板最大主應力方向矢量圖

    Figure  11.  Vector diagram of the maximum principal stress direction of the floor under the coal pillar

    圖  12  距煤柱邊緣不同距離下巷道圍巖塑性區分布形態. (a)4 m; (b)6 m; (c)8 m; (d)10 m; (e)12 m; (f)14 m; (g)16 m; (h)18 m; (i)30 m

    Figure  12.  Plastic zone distribution of the roadway surrounding rock in different distances from the coal pillar edge: (a) 4 m; (b) 6 m; (c) 8 m; (d) 10 m; (e) 12 m; (f) 14 m; (g) 16 m; (h) 18 m; (i) 30 m

    圖  13  11-1021巷圍巖破壞情況. (a)靠近煤柱側巷幫; (b)巷道頂板; (c)遠離煤柱側巷幫; (d)靠近煤柱側頂板; (e)遠離煤柱側頂板; (f)靠近煤柱側底板鉆孔; (g)遠離煤柱側底板鉆孔

    Figure  13.  Surrounding rock failure of 11-1021 roadway: (a) roadway side near the coal pillar; (b) roadway roof; (c) roadway side far away from coal pillar; (d) roof near the coal pillar side; (e) roof far away from the coal pillar; (f) floor drilling hole near the coal pillar side; (g) floor drilling hole away from pillar side

    圖  14  11-1021巷圍巖支護優化(單位:mm)

    Figure  14.  11-1021 roadway surrounding support optimization (Unit: mm)

    表  1  巖層物理力學參數

    Table  1.   Rock’s physical and mechanical parameters

    Rock stratumThickness /mDensity/
    (kg·m?3)
    Bulk/
    GPa
    Shear/
    GPa
    Cohesion/
    MPa
    Cohesion /MPaAngle of internal friction /(°)
    Overlying strata46246010.838.137.85.438
    Siltstone826805.64.25.21.429
    K2 limestone8.928005.574.535.43.827
    No.9 coal114002.080.541.20.6420
    Mudstone2.326002.911.522.132
    No.10 coal2.6514202.501.722121
    Siltstone2.8226805.64.25.11.429
    Mudstone3.824616.083.4730.628
    No.11 coal3.214232.501.722.41.229
    Aluminous mudstone0.821002.61.82.65225
    Mudstone324616.083.4730.628
    Siltstone2.5326805.64.25.11.429
    Aluminous mudstone329812.1712.40.925
    Quartz sandstone226503.051.924.31.627
    Siltstone1026805.574.25.11.429
    Overlying strata3526805.64.185.21.530
    下載: 導出CSV
    久色视频
  • [1] Yu Y, Shen W L, Gao J. Deformation mechanism and control of lower seam roadway of contiguous seams. J Min Saf Eng, 2016, 33(1): 49

    于洋, 神文龍, 高杰. 極近距離煤層下位巷道變形機理及控制. 采礦與安全工程學報, 2016, 33(1):49
    [2] Hao D Y, Wu Y Z, Chen H J, et al. Instability mechanism and prevention technology of roadway in close distance and extra thick coal seam under goaf. J China Coal Soc, 2019, 44(9): 2682

    郝登云, 吳擁政, 陳海俊, 等. 采空區下近距離特厚煤層回采巷道失穩機理及其控制. 煤炭學報, 2019, 44(9):2682
    [3] Cao S G, Zou D J, Bai Y J, et al. Surrounding rock control of mining roadway in the thin coal seam group with short distance and “three soft”. J Min Saf Eng, 2011, 28(4): 524 doi: 10.3969/j.issn.1673-3363.2011.04.005

    曹樹剛, 鄒德均, 白燕杰, 等. 近距離“三軟”薄煤層群回采巷道圍巖控制. 采礦與安全工程學報, 2011, 28(4):524 doi: 10.3969/j.issn.1673-3363.2011.04.005
    [4] Zheng B S, Xie W B, Dou L M, et al. A surrounding rock controlling technique of roadway affected by dynamic stress in “islet face” of adjacent coal seam. J China Univ Min Technol, 2006, 35(4): 483 doi: 10.3321/j.issn:1000-1964.2006.04.012

    鄭百生, 謝文兵, 竇林名, 等. 近距離孤島工作面動壓影響巷道圍巖控制. 中國礦業大學學報, 2006, 35(4):483 doi: 10.3321/j.issn:1000-1964.2006.04.012
    [5] Peng G Y, Gao M Z, Lü Y C, et al. Investigation on mining mechanics behavior of deep close distance seam group. J China Coal Soc, 2019, 44(7): 1971

    彭高友, 高明忠, 呂有廠, 等. 深部近距離煤層群采動力學行為探索. 煤炭學報, 2019, 44(7):1971
    [6] Wang L F, Chang Z C, Yang Z B, et al. Combined support technology of roadway under mined gob of ultra-distance seams in deep mine. J Min Saf Eng, 2018, 35(4): 686

    王龍飛, 常澤超, 楊戰標, 等. 深井近距離煤層群采空區下回采巷道聯合支護技術. 采礦與安全工程學報, 2018, 35(4):686
    [7] Fang X Q, Guo M J, Lu Z Q. Instability mechanism and prevention of roadway under close-distance seam group mining. Chin J Rock Mech Eng, 2009, 28(10): 2059 doi: 10.3321/j.issn:1000-6915.2009.10.013

    方新秋, 郭敏江, 呂志強. 近距離煤層群回采巷道失穩機制及其防治. 巖石力學與工程學報, 2009, 28(10):2059 doi: 10.3321/j.issn:1000-6915.2009.10.013
    [8] Lu Y, Gao J, Liu C Y, et al. Study on the optimal layout of roadways of contiguous seams by simultaneous mining. J Min Saf Eng, 2012, 29(6): 797

    魯巖, 高杰, 劉長友, 等. 近距煤層同采巷道優化布置研究. 采礦與安全工程學報, 2012, 29(6):797
    [9] Ma Z Q, Jiang Y D, Yang Y M, et al. Floor roadway stability in repeated mining of close distance coal seams in Luling coal mine. Chin J Rock Mech Eng, 2015, 34(Suppl 1): 3320

    馬振乾, 姜耀東, 楊英明, 等. 蘆嶺礦近距離煤層重復開采下底板巷道穩定性研究. 巖石力學與工程學報, 2015, 34(增刊1): 3320
    [10] Wang R, Yan S, Bai J B, et al. Theoretical analysis of the destabilization mechanism and the damaged width of rib pillar in open-pit highwall mining. Rock Soil Mech, 2019, 40(8): 3167

    王瑞, 閆帥, 柏建彪, 等. 端幫開采下煤柱破壞寬度計算及失穩機制研究. 巖土力學, 2019, 40(8):3167
    [11] Xu Z L. A Concise Course in Elasticity. 4th Ed. Beijing: Higher Education Press, 2013

    徐芝綸. 彈性力學簡明教程. 4版. 北京: 高等教育出版社, 2013
    [12] Meng X R, Xu C H, Gao Z N, et al. Stress distribution and damage mechanism of mining floor. J China Coal Soc, 2010, 35(11): 1832

    孟祥瑞, 徐鋮輝, 高召寧, 等. 采場底板應力分布及破壞機理. 煤炭學報, 2010, 35(11):1832
    [13] Zhu S Y, Jiang Z Q, Yao P, et al. Application of analytic method in calculating floor stress of a working face. J Min Saf Eng, 2007, 24(2): 191 doi: 10.3969/j.issn.1673-3363.2007.02.015

    朱術云, 姜振泉, 姚普, 等. 采場底板巖層應力的解析法計算及應用. 采礦與安全工程學報, 2007, 24(2):191 doi: 10.3969/j.issn.1673-3363.2007.02.015
    [14] Lu H F, Yao D X. Stress distribution and failure depths of layered rock mass of mining floor. Chin J Rock Mech Eng, 2014, 33(10): 2030

    魯海峰, 姚多喜. 采動底板層狀巖體應力分布規律及破壞深度研究. 巖石力學與工程學報, 2014, 33(10):2030
    [15] Lu H F, Yao D X, Liang X Y, et al. Analytical solution of stress in a transversely isotropic floor rock mass under mining. Chin J Undergr Space Eng, 2013, 9(5): 1050

    魯海峰, 姚多喜, 梁修雨, 等. 采動底板橫觀各向同性巖體應力解析解. 地下空間與工程學報, 2013, 9(5):1050
    [16] Song W C, Liang Z Z, Liu W T, et al. Theoretical analysis and experimental investigation on failure characteristics and stability of stope floors. Chin J Rock Mech Eng, 2019, 38(11): 2208

    宋文成, 梁正召, 劉偉韜, 等. 采場底板破壞特征及穩定性理論分析與試驗研究. 巖石力學與工程學報, 2019, 38(11):2208
    [17] Zhang H L, Wang L G. Computation of mining induced floor additional stress and its application. J Min Saf Eng, 2011, 28(2): 288 doi: 10.3969/j.issn.1673-3363.2011.02.023

    張華磊, 王連國. 采動底板附加應力計算及其應用研究. 采礦與安全工程學報, 2011, 28(2):288 doi: 10.3969/j.issn.1673-3363.2011.02.023
    [18] Peng W H, Dong Z Z, Li S C. Boundary integral formula of semi-plane elasticity problem and its application. J China Univ Min Technol, 2005, 34(3): 400 doi: 10.3321/j.issn:1000-1964.2005.03.028

    彭維紅, 董正筑, 李順才. 半平面體彈性問題的邊界積分公式及應用. 中國礦業大學學報, 2005, 34(3):400 doi: 10.3321/j.issn:1000-1964.2005.03.028
    [19] Wang M, Niu Y H, Yu Y J, et al. Experimental research on characteristics of deformation and failure of surrounding rock of roadway in deep mine under influence of principal stress evolution. Chin J Geotech Eng, 2016, 38(2): 237 doi: 10.11779/CJGE201602006

    王猛, 牛譽賀, 于永江, 等. 主應力演化影響下的深部巷道圍巖變形破壞特征試驗研究. 巖土工程學報, 2016, 38(2):237 doi: 10.11779/CJGE201602006
    [20] Yin G Z, Lu J, Li X, et al. Stability and plastic zone characteristics of surrounding rock under true triaxial stress conditions. J China Coal Soc, 2018, 43(10): 2709

    尹光志, 魯俊, 李星, 等. 真三軸應力條件下鉆孔圍巖穩定性及塑性區特性. 煤炭學報, 2018, 43(10):2709
    [21] Yin G Z, Lu J, Zhang D M, et al. Study on plastic zone and permeability-increasing radius of borehole surrounding rock under true triaxial stress conditions. Rock Soil Mech, 2019, 40(Suppl 1): 1

    尹光志, 魯俊, 張東明, 等. 真三軸應力條件下鉆孔圍巖塑性區及增透半徑研究. 巖土力學, 2019, 40(增刊1): 1
    [22] Zhao H B, Cheng H, Li J Y, et al. Study on asymmetric deformation mechanism of surrounding rock of roadway under the effect of isolated coal pillar. Chin J Rock Mech Eng, 2020, 39(Suppl 1): 2771

    趙洪寶, 程輝, 李金雨, 等. 孤島煤柱影響下巷道圍巖非對稱性變形機制研究. 巖石力學與工程學報, 2020, 39(增刊1): 2771
    [23] Zhang G, Wu J G, Yang L J. Determination of the sealing length of upward long crossing boreholes for gas drainage under unequal stress fields. Chin J Rock Mech Eng, 2018, 37(Suppl 1): 3422

    章光, 吳金剛, 楊龍杰. 非等壓應力場上向長距離穿層瓦斯抽采鉆孔密封長度研究. 巖石力學與工程學報, 2018, 37(增刊1): 3422
    [24] Wang W J, Dong E Y, Yuan C. Boundary equation of plastic zone of circular roadway in non-axisymmetric stress and its application. J China Coal Soc, 2019, 44(1): 105

    王衛軍, 董恩遠, 袁超. 非等壓圓形巷道圍巖塑性區邊界方程及應用. 煤炭學報, 2019, 44(1):105
    [25] Liu L Y, Ji H G, Wang T, et al. Mechanism of country rock damage and failure in deep shaft excavation under high pore pressure and asymmetric geostress. Chin J Eng, 2020, 42(6): 715

    劉力源, 紀洪廣, 王濤, 等. 高滲透壓和不對稱圍壓作用下深豎井圍巖損傷破裂機理. 工程科學學報, 2020, 42(6):715
    [26] Ma N J, Guo X F, Zhao Z Q, et al. Occurrence mechanisms and judging criterion on circular tunnel butterfly rock burst in homogeneous medium. J China Coal Soc, 2016, 41(11): 2679

    馬念杰, 郭曉菲, 趙志強, 等. 均質圓形巷道蝶型沖擊地壓發生機理及其判定準則. 煤炭學報, 2016, 41(11):2679
    [27] Zhao H B, Cheng H, Ji D L, et al. Study of the mechanism and evolution law of unsymmetrical failure of the mining roadway in close distance coal seam. Chin J Geotech Eng, 2021, 50(6): 1029

    趙洪寶, 程輝, 吉東亮, 等. 近距離煤層回采巷道非對稱性破壞機理與演化規律研究. 中國礦業大學學報, 2021, 50(6):1029
    [28] Zhao H B, Cheng H, Wang L, et al. Distribution characteristics of deviatoric stress field and failure law of roadway surrounding rock under non-hydrostatic pressure. J China Coal Soc, 2021, 46(2): 370

    趙洪寶, 程輝, 王磊, 等. 非靜水壓力條件下巷道圍巖偏應力場分布特征與圍巖破壞規律. 煤炭學報, 2021, 46(2):370
  • 加載中
圖(14) / 表(1)
計量
  • 文章訪問數:  467
  • HTML全文瀏覽量:  255
  • PDF下載量:  83
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-11-25
  • 網絡出版日期:  2021-06-18
  • 刊出日期:  2022-07-01

目錄

    /

    返回文章
    返回