Effect of slag composition on desulfurization and alkali removal ability of blast furnace slag for Bayan Obo iron ore
-
摘要: 為了探明爐渣成分對冶煉白云鄂博礦高爐渣脫硫和排堿能力的影響,在實際高爐渣成分的基礎上,通過正交試驗和Factsage 7.1熱力學模擬軟件繪制不同組分高爐渣渣系五元偽三元相圖,探究了自由堿度(Ro)、w(MgO)和w(Al2O3)對高爐渣脫硫、排堿能力的影響規律,并結合生產實際給出了適宜的爐渣自由堿度(Ro)、w(MgO)和w(Al2O3)的控制范圍。研究表明: Ro是影響爐渣脫硫、排堿能力的最顯著因素,Ro增加,渣中O2?濃度升高,促使硅氧復合陰離子Si?O解體,爐渣黏度減小,爐渣與金屬液體之間的傳質過程得到促進,使得S2?更容易向渣中遷移,爐渣脫硫的熱力學和動力學條件改善,脫硫能力提高,適宜的Ro應控制在1.05~1.15;w(MgO)是影響爐渣脫硫能力的次要因素,w(MgO)增加,爐渣的流動性和穩定性提高,有利于改善爐渣脫硫的動力學條件,且可降低爐渣中(K2O+Na2O)的活度,提高排堿能力,適宜w(MgO)應控制在15%左右;w(Al2O3)是影響爐渣排堿能力的次要因素,w(Al2O3)增加,易生成鎂鋁尖晶石(MgAl2O4)等高熔點物質,使爐渣中的自由氧離子消耗量增多,不利于脫硫反應動力學條件的改善,雖然增加w(Al2O3)有益于排堿,但高w(Al2O3)不利于脫硫,且會導致爐渣黏度上升,適宜w(Al2O3)應控制在12%左右。Abstract: To investigate the effect of slag composition on desulfurization and alkali removal ability of blast furnace slag for smelting Bayan Obo ore, based on the actual composition of blast furnace slag, the effect of free basicity (Ro), w(MgO), and w(Al2O3) on the desulfurization and alkali removal ability of blast furnace slag was investigated by performing orthogonal experiments and on the basis of five-element pseudoternary phase diagrams of various components of a blast furnace slag system calculated and drawn using Factsage 7.1 thermodynamic simulation software, and the appropriate control range of Ro, w(MgO) and w(Al2O3) in the slag were given in combination with the production practice. The results show that: Ro is the most significant factor affecting slag desulfurization and alkali removal ability. With the increase in Ro, the O2? concentration in slag increases, resulting in Si?O disintegration, and slag viscosity decreases. In addition, the mass transfer between slag and metal liquid is accelerated, which makes S2? easier to migrate into slag, the thermodynamic and kinetic conditions of slag desulfurization are improved, thus improving the desulfurization ability. The appropriate Ro should be controlled within the range of 1.05–1.15. w(MgO) is a secondary factor affecting the slag desulfurization ability. With the increase in w(MgO), the fluidity and stability of the slag are improved, which are beneficial for improving the kinetic conditions of slag desulfurization and reducing the activity of (K2O+Na2O) in the slag, thus improving the alkali removal ability. Appropriate w(MgO) should be controlled at approximately 15%. w(Al2O3) is a secondary factor affecting the alkali removal ability of blast furnace slag. With the increase in w(Al2O3), high melting point materials such as MgAl2O4 are easily formed, thereby increasing the consumption of free oxygen ions in the slag. This increase is not conducive to the improvement of desulfurization reaction kinetic conditions. Although increasing w(Al2O3) is beneficial for removing alkali, high w(Al2O3) is not conducive to desulfurization and leads to an increase in slag viscosity. Appropriate w(Al2O3) should be controlled at approximately 12%.
-
Key words:
- blast furnace slag /
- Bayan Obo iron ore /
- slag composition /
- desulfurization /
- alkali removal
-
圖 7 不同Al2O3含量的 CaO?SiO2?MgO?Al2O3?CaF2 五元渣偽三元相圖. (a) w(Al2O3)=11%; (b) w(Al2O3)=13%; (c) w(Al2O3)=15%; (d) w(Al2O3)=17%
Figure 7. Pseudoternary phase diagram of CaO?SiO2?MgO?Al2O3?CaF2 five-component slag with different Al2O3 contents: (a) w(Al2O3)=11%; (b) w(Al2O3)=13%; (c) w(Al2O3)=15%; (d) w(Al2O3)=17%
表 1 高爐渣實際化學成分
Table 1. Actual chemical composition of blast furnace slag
w(CaO)/% w(SiO2)/% w(MgO)/% w(Al2O3)/% w(F)/% w(Na2O)/% w(K2O)/% w(S)/% Ro 34.93 35.70 9.70 11.77 0.38 0.46 0.56 1.39 0.96 表 2 實驗設計方案
Table 2. Experimental design scheme
Experiment number Ro w(MgO)/% w(Al2O3)/% 1# C3(1.15) A1(10) B2(13) 2# C1(0.95) A3(14) B4(17) 3# C3(1.15) A2(12) B4(17) 4# C1(0.95) A4(16) B2(13) 5# C1(0.95) A1(10) B3(15) 6# C3(1.15) A3(14) B1(11) 7# C1(0.95) A2(12) B1(11) 8# C3(1.15) A4(16) B3(15) 9# C4(1.25) A1(10) B1(11) 10# C2(1.05) A3(14) B3(15) 11# C4(1.25) A2(12) B3(15) 12# C2(1.05) A4(16) B1(11) 13# C2(1.05) A1(10) B4(17) 14# C4(1.25) A3(14) B2(13) 15# C2(1.05) A2(12) B2(13) 16# C4(1.25) A4(16) B4(17) Note: Ro is the free basicity, and the calculation formula is as follows: $ {R}_{\mathrm{O}}=[w\left(\mathrm{C}\mathrm{a}\mathrm{O}\right)-1.473\times w\left(\mathrm{F}\right)]/w\left({\mathrm{S}\mathrm{i}\mathrm{O}}_{2}\right) $, which is the representation method of basicity of fluorine-containing blast furnace slag in Bayan Obo iron ore. 表 3 合成渣實際化學成分
Table 3. Actual chemical composition of synthetic blast furnace slag
Experiment number w(CaO)/% w(SiO2)/% w(MgO)/% w(Al2O3)/% w(F)/% w(Na2O)/% w(K2O)/% w(S)/% Ro 1# 36.03 30.44 9.83 12.78 0.98 0.68 0.41 1.17 1.14 2# 31.07 31.05 13.21 16.21 0.73 0.59 0.32 1.01 0.96 3# 34.62 29.65 12.66 17.40 0.82 0.63 0.35 0.98 1.13 4# 32.56 32.16 14.73 13.14 0.82 0.58 0.41 1.06 0.97 5# 33.27 33.49 10.42 14.29 0.94 0.61 0.42 1.05 0.95 6# 35.93 30.22 13.63 11.66 0.91 0.63 0.45 1.16 1.14 7# 33.84 34.33 12.71 11.71 0.81 0.65 0.39 0.96 0.95 8# 32.75 27.98 16.38 15.27 0.72 0.58 0.35 0.87 1.13 9# 38.93 31.02 10.65 11.43 0.73 0.61 0.38 0.95 1.22 10# 32.52 30.25 14.52 15.54 0.79 0.67 0.37 0.96 1.04 11# 35.85 28.16 12.65 15.36 0.78 0.55 0.35 0.88 1.23 12# 33.16 31.11 15.92 11.13 0.82 0.66 0.38 0.97 1.03 13# 32.87 30.5 10.63 17.24 0.80 0.65 0.41 0.97 1.04 14# 36.22 28.71 14.68 13.57 0.73 0.56 0.35 0.86 1.22 15# 33.87 31.7 12.70 13.35 0.89 0.64 0.40 0.96 1.03 16# 32.84 26.59 16.31 17.72 0.65 0.55 0.32 0.82 1.20 表 4 高爐渣脫硫實驗結果極差分析
Table 4. Range analysis of experimental results of blast furnace slag desulfurization
Experiment number Ro w(MgO) w(Al2O3) w[S] w(S) Ls 1# C3 A1 B2 0.017 1.260 74.120 2# C1 A3 B4 0.018 1.010 56.110 3# C3 A2 B4 0.019 1.044 76.550 4# C1 A4 B2 0.013 1.030 79.230 5# C1 A1 B3 0.022 1.040 47.270 6# C3 A3 B1 0.012 1.240 103.330 7# C1 A2 B1 0.020 1.010 50.500 8# C3 A4 B3 0.010 0.991 99.100 9# C4 A1 B1 0.013 1.070 82.310 10# C2 A3 B3 0.015 0.978 65.200 11# C4 A2 B3 0.008 0.941 117.630 12# C2 A4 B1 0.014 1.040 74.290 13# C2 A1 B4 0.020 1.010 50.500 14# C4 A3 B2 0.008 0.979 122.380 15# C2 A2 B2 0.021 1.070 50.950 16# C4 A4 B4 0.010 0.867 86.700 Factor level mean, K1 58.28 63.55 77.61 — — — Factor level mean, K2 60.24 73.91 81.67 — — — Factor level mean, K3 88.28 86.76 82.30 — — — Factor level mean, K4 102.26 84.83 67.47 — — — Range, R 43.98 23.21 14.84 — — — 表 5 高爐渣脫硫實驗結果回歸方差分析
Table 5. Variance analysis of experimental results of blast furnace slag desulfurization
Parameter Df SS MS F value Significance F w(S) Regression analysis 3 0.000262 8.74×10?5 15.49949 0.000198 Residual 12 6.77×10?5 5.64×10?6 — — Sum 15 0.00033 — — — Ls Regression analysis 3 6573.193 2191.064 12.04054 0.000847 Residual 11 2001.713 181.9739 — — Sum 14 8574.906 — — — Note: Df represents degree of freedom; SS represents regression sum of squares; MS represents mean square; F value represents analysis of variance test statistics. 表 6 高爐渣排堿實驗結果
Table 6. Experimental results of alkali removal from blast furnace slag
Experiment number Ro w(MgO) w(Al2O3) w(K2O+Na2O)/% 1# C3 A1 B2 0.608 2# C1 A3 B4 0.680 3# C3 A2 B4 0.295 4# C1 A4 B2 0.881 5# C1 A1 B3 0.826 6# C3 A3 B1 0.650 7# C1 A2 B1 0.638 8# C3 A4 B3 0.158 9# C4 A1 B1 0.212 10# C2 A3 B3 0.203 11# C4 A2 B3 0.097 12# C2 A4 B1 0.971 13# C2 A1 B4 0.42 14# C4 A3 B2 0.346 15# C2 A2 B2 0.580 16# C4 A4 B4 0.129 Factor level mean, K1 0.756 0.517 0.618 — Factor level mean, K2 0.544 0.403 0.604 — Factor level mean, K3 0.428 0.470 0.321 — Factor level mean, K4 0.196 0.535 0.381 — Range, R 0.560 0.132 0.297 — 表 7 高爐渣排堿實驗結果回歸方差分析
Table 7. Variance analysis of experimental results of alkali removal from blast furnace slag
Parameter Df SS MS F value Significance F Regression analysis 3 0.843671 0.281224 8.973547 0.00216 Residual 12 0.37607 0.031339 — — Sum 15 1.219742 — — — -
參考文獻
[1] Ba Z W, Li M, Zhang D L, et al. Blast furnace slag and its current using status in Baotou steel. Met Mater Metall Eng, 2018, 46(3): 45巴增文, 李梅, 張棟梁, 等. 包鋼高爐渣及其應用現狀. 金屬材料與冶金工程, 2018, 46(3):45 [2] Yang X. Comparison of Crust Evolution and Gold Deposits Genesis in the Bayan Obo-Alxa League Region, inner Mongolia [Dissertation]. Beijing: Chinese Academy of Geological Sciences, 2019楊軒. 內蒙古白云鄂博—阿拉善右旗地殼演化與金礦成因對比研究[學位論文]. 北京: 中國地質科學院, 2019 [3] Hao Z P, Guo Z T, Lian H, et al. Experimental study on the feasibility of improving blast furnace’s basicity of slag. Iron Steel Vanadium Titanium, 2016, 37(3): 98郝忠平, 郭卓團, 廉華, 等. 提高包鋼高爐渣堿度的試驗研究. 鋼鐵釩鈦, 2016, 37(3):98 [4] Lv X W, Yan Z M, Pang Z D, et al. Effect of Al2O3 on physicochemical properties and structure of blast furnace slag: Review. Iron Steel, 2020, 55(2): 1呂學偉, 嚴志明, 龐正德, 等. Al2O3對高爐渣物化性能和結構影響研究綜述. 鋼鐵, 2020, 55(2):1 [5] Luo G P, Sun G L, Zhang X F, et al. Desulphurization thermodynamics and kinetics of special BF slag at Baotou steel. J Iron Steel Res, 2007, 19(9): 9羅果萍, 孫國龍, 張學鋒, 等. 包鋼特殊礦冶煉高爐渣脫硫的熱力學和動力學. 鋼鐵研究學報, 2007, 19(9):9 [6] Liu Z, Wang Y C, Zhao F G, et al. Influence of binary basicity on physical properties of blast furnace slag of Baogang Group. J Iron Steel Res, 2019, 31(8): 696柳哲, 王藝慈, 趙鳳光, 等. 堿度對包鋼高爐渣物理性能的影響. 鋼鐵研究學報, 2019, 31(8):696 [7] Pang Z D, Lv X W, Yan Z M, et al. Viscosity and free running temperature of ultra-high TiO2 bearing blast furnace slag. Iron Steel, 2020, 55(8): 181龐正德, 呂學偉, 嚴志明, 等. 超高TiO2高爐渣黏度及熔化性溫度. 鋼鐵, 2020, 55(8):181 [8] Yuan X, Zhang J L, Mao R, et al. Effect of w(MgO)/w(Al2O3) ratio on desulfurization capacity of BF slag. J Northeast Univ (Nat Sci) , 2015, 36(11): 1609 doi: 10.12068/j.issn.1005-3026.2015.11.020袁驤, 張建良, 毛瑞, 等. 鎂鋁比對高爐渣脫硫能力的影響. 東北大學學報(自然科學版), 2015, 36(11):1609 doi: 10.12068/j.issn.1005-3026.2015.11.020 [9] Lv Q, Li F M, Gu L N, et al. Experimental investigation on dealkalization and desulphurization of alkaliferous BF slag. J Northeast Univ (Nat Sci) , 2007, 28(11): 1590 doi: 10.12068/j.issn.1005-3026.2007.11.019呂慶, 李福民, 顧林娜, 等. 含堿高爐渣排堿、脫硫能力的實驗研究. 東北大學學報(自然科學版), 2007, 28(11):1590 doi: 10.12068/j.issn.1005-3026.2007.11.019 [10] Zhang X S, Lv Q, Liu X J, et al. Optimal proportion of Ti, Mg and Al in BF slag. Iron Steel, 2015, 50(6): 8張旭升, 呂慶, 劉小杰, 等. 高爐爐渣中鈦、鎂、鋁最優配比. 鋼鐵, 2015, 50(6):8 [11] Xie H E. Effect of Ti(C, N) on desulfurization capacity of high-titanium-type blast furnace slag. China Metall, 2020, 30(1): 32謝洪恩. Ti(C, N)對高鈦型高爐渣脫硫能力的影響. 中國冶金, 2020, 30(1):32 [12] Yao J B, Liu W G, Ju J T, et al. Study on desulphurization capacity of CaO–SiO2–MgO–Al2O3–BaO slag systems. J Iron Steel Res, 2019, 31(3): 280姚嘉斌, 劉文果, 巨建濤, 等. CaO–SiO2–MgO–Al2O3–BaO渣系脫硫能力研究. 鋼鐵研究學報, 2019, 31(3):280 [13] Zhang H S, Xu R Z, Zhang J L, et al. Study on desulfurization properties of blast furnace slag in Shougang Jingtang United Iron and Steel Co. , Ltd. Res Iron Steel, 2016, 44(5): 14張賀順, 許仁澤, 張建良, 等. 首鋼京唐高爐渣脫硫性能研究. 鋼鐵研究, 2016, 44(5): 14 [14] Dong X X, Zhang S H, Lan C C, et al. Study on dealkalization capacity of BF slag with low titanium content. Iron Steel Vanadium Titanium, 2016, 37(6): 99 doi: 10.7513/j.issn.1004-7638.2016.06.018董曉旭, 張淑會, 蘭臣臣, 等. 低鈦高爐渣排堿能力研究. 鋼鐵釩鈦, 2016, 37(6):99 doi: 10.7513/j.issn.1004-7638.2016.06.018 [15] Wang P, Meng Q M, Long H M, et al. Influence of basicity and MgO on fluidity and desulfurization ability of high aluminum slag. High Temp Mater Process, 2016, 35(7): 669 doi: 10.1515/htmp-2015-0006 [16] Wang Z Y, Zhang J L, An G, et al. Analysis on the oversize blast furnace desulfurization and a sulfide capacity prediction model based on congregated electron phase. Metall Mater Trans B, 2016, 47(1): 127 doi: 10.1007/s11663-015-0462-3 [17] O Y K, Kong Y C, Sun Y Q, et al. Research development of alkali metal in blast furnace. J Hebei Polytech Univ (Nat Sci Ed) , 2011, 33(1): 37歐陽坤, 孔延廠, 孫艷芹, 等. 高爐中堿金屬的研究進展. 河北理工大學學報(自然科學版), 2011, 33(1):37 [18] Zhu G Y, Zhang J L, Mao R, et al. Orthogonal experimental study on removal of alkalis through blast furnace slag. Res Iron Steel, 2013, 41(6): 19朱廣躍, 張建良, 毛瑞, 等. 基于正交法的高爐渣排堿試驗研究. 鋼鐵研究, 2013, 41(6):19 [19] Sun Y Q, Wang H, Zhang Z T. Understanding the relationship between structure and thermophysical properties of CaO–SiO2–MgO–Al2O3 molten slags. Metall Mater Trans B, 2018, 49(2): 677 doi: 10.1007/s11663-018-1178-y [20] Wang D Q, Ma Z J, Chen H, et al. Thermodynamic analysis of reducing MgO content in slag for blast furnace A in Shougang. China Metall, 2018, 28(10): 5王冬青, 馬澤軍, 陳輝, 等. 首鋼A高爐爐渣降低MgO的熱力學分析. 中國冶金, 2018, 28(10):5 [21] Taniguchi Y, Wang L J, Sano N, et al. Sulfide capacities of CaO–Al2O3–SiO2 slags in the temperature range 1673 K to 1773 K (1400 ℃ to 1500 ℃). Metall Mater Trans B, 2012, 43(3): 477 doi: 10.1007/s11663-011-9621-3 [22] Liu W G, Xing X D, Zuo H B. Effect of TiO2 on viscosity and sulfide capacity of blast furnace slag containing Barium. ISIJ Int, 2020, 60(9): 1886 doi: 10.2355/isijinternational.ISIJINT-2019-627 [23] Li Q H, Jia Y N, Zhang C J, et al. Viscosity-structure analysis of CaO–SiO2–MgO–Al2O3–Cr2O3 slags and application of Iida model. Iron Steel, 2019, 54(4): 99李秋寒, 賈雅楠, 張超杰, 等. CaO–SiO2–MgO–Al2O3–Cr2O3渣系黏度結構分析及Iida模型應用. 鋼鐵, 2019, 54(4):99 [24] Liu Y, Li G Q, Wang Q, et al. Effect of slag composition on desulfurization during recycling rejected electrolytic manganese metal by electroslag remelting. Metall Res Technol, 2021, 118(2): 206 doi: 10.1051/metal/2021019 [25] Hao X, Wang X H. A new sulfide capacity model for CaO–Al2O3–SiO2–MgO slags based on corrected optical basicity. Steel Res Int, 2016, 87(3): 359 doi: 10.1002/srin.201500065 [26] Ren Z S, Hu X J, Chou K C. Calculation and analysis of sulfide capacities for CaO–Al2O3–SiO2–MgO–TiO2 slags. J Iron Steel Res Int, 2013, 20(9): 21 doi: 10.1016/S1006-706X(13)60151-X [27] Du G P, Duan W M. Summary of industrial test on increasing MgO content in sinter of Baotou Steel. Sci Technol Baotou Steel (Group)Corp, 1997, 23(3): 107杜國萍, 段維民. 包鋼燒結礦提高MgO含量工業試驗總結. 包鋼科技, 1997, 23(3):107 [28] Jiang X, Shen F M, Han H S, et al. Analysis and application of sectional control of w(MgO)/w(Al2O3) in blast furnace slag. Iron Steel, 2019, 54(10): 12姜鑫, 沈峰滿, 韓宏松, 等. 高爐渣適宜鎂鋁比分段管控的分析與應用. 鋼鐵, 2019, 54(10):12 [29] Li T L, Sun C Y, Wang Q. Effects of w(MgO) and w(Al2O3) on softening-melting properties of mixed burden. Iron Steel, 2019, 54(4): 12李廷樂, 孫長余, 汪琦. w(MgO)和w(Al2O3)對混合爐料軟熔性能的影響. 鋼鐵, 2019, 54(4):12 [30] Shen F M, Jiang X, Gao Q J, et al. Theoretical basis of suitable MgO/Al2O3 ratio in BF slag. Ironmaking, 2019, 38(2): 17沈峰滿, 姜鑫, 高強健, 等. 高爐爐渣適宜鎂鋁比的理論基礎. 煉鐵, 2019, 38(2):17 [31] Jiang Z, Che Y M, Guo T Y, et al. Study on effect of Al2O3, MgO and binary basicity on stability of blast furnace slag. Angang Technol, 2019(1): 22 doi: 10.3969/j.issn.1006-4613.2019.01.006姜喆, 車玉滿, 郭天永, 等. Al2O3、MgO和二元堿度對高爐渣穩定性影響研究. 鞍鋼技術, 2019(1):22 doi: 10.3969/j.issn.1006-4613.2019.01.006 [32] Liu Z. Study on the Basic Performance of Blast Furnace Slag under the Baotou Steel Condition of Raw Materials [Dissertation]. Baotou: Inner Mongolia University of Science & Technology, 2020柳哲. 包鋼原燃料條件下高爐渣的基礎性能研究[學位論文]. 包頭: 內蒙古科技大學, 2020 [33] Sun Z G. Effect of MgO on high aluminous slag stability. Iron Steel, 2014, 49(4): 18孫忠貴. 氧化鎂對高鋁渣穩定性影響. 鋼鐵, 2014, 49(4):18 [34] Zhang Y P, Zhang J L, Mao R, et al. Thermodynamic analysis on fusion temperature and melting characteristics of BF slag. J Iron Steel Res, 2014, 26(11): 11張亞鵬, 張建良, 毛瑞, 等. 高爐爐渣熔化溫度及液相生成熱力學分析. 鋼鐵研究學報, 2014, 26(11):11 [35] Chang Z Y, Jiao K X, Zhang J L, et al. Effect of Al2O3 and MgO on the enthalpy of molten slag and thermodynamic analysis. Energy Metall Ind, 2018, 37(4): 24 doi: 10.3969/j.issn.1001-1617.2018.04.005常治宇, 焦克新, 張建良, 等. Al2O3和MgO對爐渣熱焓的影響及熱力學分析. 冶金能源, 2018, 37(4):24 doi: 10.3969/j.issn.1001-1617.2018.04.005 -