-
摘要: 近年來路徑跟蹤控制的發展十分迅猛,研究者們發表了大量的研究成果。考慮到在相同或相近工況下的路徑跟蹤控制存在一些共性的技術問題與解決思路,從低速路徑跟蹤控制和高速路徑跟蹤控制兩個角度對近年來的研究成果進行了回顧。在關于低速路徑跟蹤控制的研究工作中,研究者們較為重視前輪轉角速度約束等系統約束對路徑跟蹤精確性的影響。目前減少系統約束影響的方法包括在規劃參考路徑時將系統約束納入考慮,采用預瞄控制使控制器提前響應,以及采用線性模型預測控制(LMPC)或非線性模型預測控制(NMPC)等模型預測控制方法作為路徑跟蹤控制方法等。考慮到NMPC既能減少系統約束的影響,又無需人為設置預瞄距離,且對定位誤差等擾動因素具有較強的魯棒性,加之低速路徑跟蹤控制對實時性的需求較低,因此可以認為NMPC能夠滿足低速路徑跟蹤控制的絕大多數需求。高速路徑跟蹤控制在受系統約束影響之外,還面臨著較高車速帶來的行駛穩定性不足問題的挑戰,因此常采用能夠將動力學層面的復雜系統約束納入考慮且計算成本較低的LMPC作為路徑跟蹤控制方法。不過僅采用動力學層面的LMPC控制方法無法完全解決高速路徑跟蹤控制中路徑跟蹤精確性和車輛行駛穩定性之間存在耦合的問題,目前常見的解決思路是在路徑跟蹤控制中加入額外的速度調節或權重分配模塊。此外,在高速路徑跟蹤控制中,地面附著系數等環境參數的影響也較大,因此地面附著系數等環境參數的估算也成為了高速路徑跟蹤控制領域的重要研究方向。Abstract: Path tracking control is a key technology in the hierarchical unmanned driving system. Its function is to control the vehicle so that it drives along the reference path given by the path planning system. The information such as the position and posture of the vehicle required for path tracking control is provided by the perception and positioning system. In recent years, the development of path tracking control has been very rapid, and researchers have published considerable research. As there are some common technical problems and solutions in path tracking control under the same or similar scenarios, recent research results are reviewed from the perspective of both low-speed and high-speed path tracking control. In the research of low-speed path tracking control, researchers pay more attention to the influence of system constraints on the accuracy of path tracking such as front-wheel angle speed. At present, methods to reduce the influence of system constraints include: (1) taking the system constraints into consideration when planning a reference path; (2) using preview control to make the controller respond early; and (3) using model predictive control methods, such as linear model predictive control (LMPC) or non-linear model predictive control (NMPC), as path tracking control methods. NMPC can reduce the impact of system constraints and does not need manual setting of preview distance. It has strong resistance to disturbance factors such as positioning errors. Since low-speed path tracking control has low real-time requirements, it can be considered that NMPC can meet most needs of low-speed path tracking control. High-speed path tracking control, in addition to being affected by system constraints, is also challenged by insufficient driving stability caused by higher vehicle speeds. Therefore, LMPC, which can take the dynamics-level complex system constraints into account, has a lower computational cost. It is often used as the path tracking control method. However, due to high-speed path tracking control, there is a coupling relationship between path tracking accuracy and vehicle driving stability. The use of dynamics-level LMPC or other dynamics-level control methods cannot completely solve the problem caused by this coupling relationship. The current common solution is to add an extra speed adjustment module or weight distribution module to path tracking control. Additionally, in high-speed path tracking control, the influence of environmental parameters, such as ground adhesion coefficient, is also greater. Hence, the estimation of environmental parameters, such as ground adhesion coefficient, has also become an important research direction in the field of high-speed path tracking control.
-
Key words:
- unmanned driving /
- vehicle /
- path tracking /
- system constraint /
- tracking accuracy /
- driving stability
-
表 1 低速路徑跟蹤控制中減少前輪轉角速度速度約束影響的方法的特點
Table 1. The characteristics of the method to reduce the influence of the front-wheel angle speed constraint in the low-speed path following control
Method Robustness to disturbances other than curvature changes Robustness to parameters Saving cost Driving efficiency Taking system constraints into consideration
when planning the reference path? + + + Using preview control to make the controller respond early ? ? + + Using model predictive control methods such as LMPC or NMPC as path tracking control methods + + + + Relaxing the front-wheel angle speed constraint + + ? + Reducing speed + + + ? -
參考文獻
[1] Chen H Y, Xiong G M, Gong J W, et al. Introduction to Self-Driving Car. Beijing: Beijing Institute of Technology Press, 2014陳慧巖, 熊光明, 龔建偉, 等. 無人駕駛汽車概論. 北京: 北京理工大學出版社, 2014 [2] Xu Y, Lu Z F, Shan X, et al. Study on an automatic parking method based on the sliding mode variable structure and fuzzy logical control. Symmetry, 2018, 10(10): 523 doi: 10.3390/sym10100523 [3] Jiang L B, Yang J. Path tracking of automatic parking system based on sliding mode control. Trans Chin Soc Agric Mach, 2019, 50(2): 356 doi: 10.6041/j.issn.1000-1298.2019.02.041姜立標, 楊杰. 基于滑模控制的自動泊車系統路徑跟蹤研究. 農業機械學報, 2019, 50(2):356 doi: 10.6041/j.issn.1000-1298.2019.02.041 [4] Ye H, Jiang H B, Ma S D, et al. Linear model predictive control of automatic parking path tracking with soft constraints. Int J Adv Rob Syst, 2019, 16(3): 172988141985220 doi: 10.1177/1729881419852201 [5] Chen L, Luo J, Yang X, et al. Research on automatic parking algorithms based on fuzzy pure tracking control. J Wuhan Univ Technol (Inf Manage Eng) , 2019, 41(3): 316陳龍, 羅杰, 楊旭, 等. 基于模糊純追蹤控制的自動泊車算法研究. 武漢理工大學學報 (信息與管理工程版), 2019, 41(3):316 [6] Gu Q, Bai G X, Meng Y, et al. Path tracking of automatic parking based on nonlinear model predictive control. Chin J Eng, 2019, 41(7): 947顧青, 白國星, 孟宇, 等. 基于非線性模型預測控制的自動泊車路徑跟蹤. 工程科學學報, 2019, 41(7):947 [7] Song J, Zhang W W, Wu X C, et al. Laser-based SLAM automatic parallel parking path planning and tracking for passenger vehicle. IET Intell Transp Syst, 2019, 13(10): 1557 doi: 10.1049/iet-its.2019.0049 [8] Zhang J X, Shi Z T, Yang X, et al. Trajectory planning and tracking control for autonomous parallel parking of a non-holonomic vehicle. Meas Control, https://doi.org/10.1177/0020294020944961. [9] Zhang J X, Zhao J, Shi Z T, et al. Trajectory planning and tracking control for perpendicular parking based on clothoid curve. J Southeast Univ Nat Sci, 2020, 50(1): 182 doi: 10.3969/j.issn.1001-0505.2020.01.024張家旭, 趙健, 施正堂, 等. 基于回旋曲線的垂直泊車軌跡規劃與跟蹤控制. 東南大學學報(自然科學版), 2020, 50(1):182 doi: 10.3969/j.issn.1001-0505.2020.01.024 [10] Zhang J X, Zhao J, Shi Z T, et al. A trajectory planning and tracking control method for fully-automatic parking system using HP-adaptive pseudo spectral method. J Xi’an Jiaotong Univ, 2020, 54(6): 176張家旭, 趙健, 施正堂, 等. 采用HP自適應偽譜法的全自動泊車系統軌跡規劃與跟蹤控制. 西安交通大學學報, 2020, 54(6):176 [11] Liu Z D, Zhang W Z, Lv Z Q, et al. Design and test of path tracking controller based on nonlinear model prediction. Trans Chin Soc Agric Mach, 2018, 49(7): 23 doi: 10.6041/j.issn.1000-1298.2018.07.003劉正鐸, 張萬枝, 呂釗欽, 等. 基于非線性模型的農用車路徑跟蹤控制器設計與試驗. 農業機械學報, 2018, 49(7):23 doi: 10.6041/j.issn.1000-1298.2018.07.003 [12] Liu Z D, Zhang W Z, Lv Z Q, et al. Design on trajectory tracking controller of agricultural vehicles under disturbances. Trans Chin Soc Agric Mach, 2018, 49(12): 378 doi: 10.6041/j.issn.1000-1298.2018.12.045劉正鐸, 張萬枝, 呂釗欽, 等. 擾動下農用運輸車輛路徑跟蹤控制器設計與試驗. 農業機械學報, 2018, 49(12):378 doi: 10.6041/j.issn.1000-1298.2018.12.045 [13] Meng Y, Wang Y, Gu Q, et al. LQR-GA path tracking control of articulated vehicle based on predictive information. Trans Chin Soc Agric Mach, 2018, 49(6): 375 doi: 10.6041/j.issn.1000-1298.2018.06.045孟宇, 汪鈺, 顧青, 等. 基于預見位姿信息的鉸接式車輛 LQR-GA 路徑跟蹤控制. 農業機械學報, 2018, 49(6):375 doi: 10.6041/j.issn.1000-1298.2018.06.045 [14] Meng Y, Gan X, Bai G X. Path following control of underground mining articulated vehicle based on the preview control method. Chin J Eng, 2019, 41(5): 662孟宇, 甘鑫, 白國星. 基于預瞄距離的地下礦用鉸接車路徑跟蹤預測控制. 工程科學學報, 2019, 41(5):662 [15] Nayl T, Nikolakopoulos G, Gustafsson T, et al. Design and experimental evaluation of a novel sliding mode controller for an articulated vehicle. Rob Autonom Syst, 2018, 103: 213 doi: 10.1016/j.robot.2018.01.006 [16] Bai G X, Liu L, Meng Y, et al. Path tracking of mining vehicles based on nonlinear model predictive control. Appl Sci, 2019, 9(7): 1372 doi: 10.3390/app9071372 [17] Luo W D, Ma B Q, Meng Y, et al. Reactive navigation system of underground unmanned Load-Haul-Dump unit based on NMPC. J China Coal Soc, 2020, 45(4): 1536羅維東, 馬寶全, 孟宇, 等. 基于NMPC的地下無人鏟運機反應式導航系統. 煤炭學報, 2020, 45(4):1536 [18] Lin F, Ni L Q, Zhao Y Q, et al. Path following control of intelligent vehicles considering lateral stability. J South China Univ Technol Nat Sci, 2018, 46(1): 78林棻, 倪蘭青, 趙又群, 等. 考慮橫向穩定性的智能車輛路徑跟蹤控制. 華南理工大學學報(自然科學版), 2018, 46(1):78 [19] Norouzi A, Kazemi R, Azadi S. Vehicle lateral control in the presence of uncertainty for lane change maneuver using adaptive sliding mode control with fuzzy boundary layer. Proc Inst Mech Eng Part I-J Syst Control Eng, 2018, 232(1): 12 doi: 10.1177/0959651817733222 [20] Xu D Z, Deng J, Yan W X, et al. Novel data-driven path tracking constrained control for intelligent vehicle autonomous overtaking system. Control Theory Appl, 2018, 35(3): 283 doi: 10.7641/CTA.2017.60547許德智, 鄧競, 顏文旭, 等. 智能車輛自動超車系統的數據驅動路徑跟蹤約束控制. 控制理論與應用, 2018, 35(3):283 doi: 10.7641/CTA.2017.60547 [21] Ji J, Tang Z R, Wu M Y, et al. Path planning and tracking for lane changing based on model predictive control. China J Highway Transp, 2018, 31(4): 172 doi: 10.3969/j.issn.1001-7372.2018.04.021冀杰, 唐志榮, 吳明陽, 等. 面向車道變換的路徑規劃及模型預測軌跡跟蹤. 中國公路學報, 2018, 31(4):172 doi: 10.3969/j.issn.1001-7372.2018.04.021 [22] Sun C Y, Zhang X, Xi L H, et al. Design of a path-tracking steering controller for autonomous vehicles. Energies, 2018, 11(6): 1451 doi: 10.3390/en11061451 [23] Ji X W, Liu Y L, He X K, et al. Interactive control paradigm-based robust lateral stability controller design for autonomous automobile path tracking with uncertain disturbance: A dynamic game approach. IEEE Trans Veh Technol, 2018, 67(8): 6906 doi: 10.1109/TVT.2018.2834381 [24] Cui Q J, Ding R J, Zhou B, et al. Path-tracking of an autonomous vehicle via model predictive control and nonlinear filtering. Proc Inst Mech Eng Part D-J Automob Eng, 2018, 232(9): 1237 doi: 10.1177/0954407017728199 [25] Zhao Z G, Zhou L J, Zhu Q. Preview distance adaptive optimization for the path tracking control of unmanned vehicle. J Mech Eng, 2018, 54(24): 166 doi: 10.3901/JME.2018.24.166趙治國, 周良杰, 朱強. 無人駕駛車輛路徑跟蹤控制預瞄距離自適應優化. 機械工程學報, 2018, 54(24):166 doi: 10.3901/JME.2018.24.166 [26] Cao Y, Cao J Y, Yu F, et al. A new vehicle path-following strategy of the steering driver model using general predictive control method. Proc Inst Mech Eng Part C-J Eng Mech Eng Sci, 2018, 232(24): 4578 doi: 10.1177/0954406216685123 [27] Yu L L, Kong D C, Shao X Y, et al. A path planning and navigation control system design for driverless electric bus. IEEE Access, 2018, 6: 53960 doi: 10.1109/ACCESS.2018.2868339 [28] Guo H Y, Liu J, Cao D P, et al. Dual-envelop-oriented moving horizon path tracking control for fully automated vehicles. Mechatronics, 2018, 50: 422 doi: 10.1016/j.mechatronics.2017.02.001 [29] Ji X W, He X K, Lv C, et al. Adaptive-neural-network-based robust lateral motion control for autonomous vehicle at driving limits. Control Eng Pract, 2018, 76: 41 doi: 10.1016/j.conengprac.2018.04.007 [30] Guo J H, Luo Y G, Li K Q, et al. Coordinated path-following and direct yaw-moment control of autonomous electric vehicles with sideslip angle estimation. Mech Syst Signal Process, 2018, 105: 183 doi: 10.1016/j.ymssp.2017.12.018 [31] Yang L, Yue M, Ma T. Path following predictive control for autonomous vehicles subject to uncertain tire-ground adhesion and varied road curvature. Int J Control Autom Syst, 2019, 17(1): 193 doi: 10.1007/s12555-017-0457-8 [32] Ren Y, Zheng L, Khajepour A. Integrated model predictive and torque vectoring control for path tracking of 4-wheel-driven autonomous vehicles. IET Intell Transp Syst, 2019, 13(1): 98 doi: 10.1049/iet-its.2018.5095 [33] Zhang C Y, Chu D F, Liu S D, et al. Trajectory planning and tracking for autonomous vehicle based on state lattice and model predictive control. IEEE Intell Transp Syst Mag, 2019, 11(2): 29 doi: 10.1109/MITS.2019.2903536 [34] Wei S Y, Zou Y, Zhang X D, et al. An integrated longitudinal and lateral vehicle following control system with radar and vehicle-to-vehicle communication. IEEE Trans Veh Technol, 2019, 68(2): 1116 doi: 10.1109/TVT.2018.2890418 [35] Mata S, Zubizarreta A, Pinto C. Robust tube-based model predictive control for lateral path tracking. IEEE Trans Intell Veh, 2019, 4(4): 569 doi: 10.1109/TIV.2019.2938102 [36] Lin F, Chen Y K, Zhao Y Q, et al. Path tracking of autonomous vehicle based on adaptive model predictive control. Int J Adv Rob Syst, 2019, 16(5): 1729881419880089 [37] Zhao Z G, Zhou L J, Wang K. Path tracking control of four-wheel drive hybrid electric car in steering. J Tongji Univ Nat Sci, 2019, 47(5): 695趙治國, 周良杰, 王凱. 四驅混合動力轎車轉彎工況路徑跟蹤控制. 同濟大學學報(自然科學版), 2019, 47(5):695 [38] Yuan K, Shu H, Huang Y J, et al. Mixed local motion planning and tracking control framework for autonomous vehicles based on model predictive control. IET Intell Transp Syst, 2019, 13(6): 950 doi: 10.1049/iet-its.2018.5387 [39] Liu Z Q, Wang Y F, Wu X G, et al. Collision avoidance by lane changing based on linear path-following control. China J Highway Transp, 2019, 32(6): 86劉志強, 王一凡, 吳雪剛, 等. 基于線性路徑跟蹤控制的換道避撞控制策略研究. 中國公路學報, 2019, 32(6):86 [40] Li Y S, Chi Y X, Ji X W, et al. A research on cooperative path tracking and anti-roll control of commercial vehicle based on Pareto optimal equilibrium theory. Autom Eng, 2019, 41(6): 654李玉善, 遲元欣, 季學武, 等. 基于Pareto最優均衡理論的商用車路徑跟蹤與抗側傾協同控制研究. 汽車工程, 2019, 41(6):654 [41] Li S, Xu Y H, Chen J, et al. A study on vehicle lateral tracking control based on arc-length preview. Autom Eng, 2019, 41(6): 668李爽, 徐延海, 陳靜, 等. 基于弧長預瞄的車輛側向跟蹤控制研究. 汽車工程, 2019, 41(6):668 [42] Zhou S, Wu N, Zhi X L. Path tracking predictive control of four-wheel independent steering electric vehicle. J Tongji Univ Nat Sci, 2019, 47(6): 842周蘇, 吳楠, 支雪磊. 四輪獨立轉向電動汽車路徑跟蹤預測控制. 同濟大學學報(自然科學版), 2019, 47(6):842 [43] Hu C, Wang Z F, Taghavifar H, et al. MME-EKF-based path-tracking control of autonomous vehicles considering input saturation. IEEE Trans Veh Technol, 2019, 68(6): 5246 doi: 10.1109/TVT.2019.2907696 [44] Chen T, Chen L, Xu X, et al. Path following control of autonomous vehicles based on Hamilton theory. Trans Beijing Inst Technol, 2019, 39(7): 676陳特, 陳龍, 徐興, 等. 基于Hamilton理論的無人車路徑跟蹤控制. 北京理工大學學報, 2019, 39(7):676 [45] Chen T, Chen L, Xu X, et al. Integrated control of unmanned distributed driven vehicles path tracking and stability. Autom Eng, 2019, 41(10): 1109陳特, 陳龍, 徐興, 等. 分布式驅動無人車路徑跟蹤與穩定性協調控制. 汽車工程, 2019, 41(10):1109 [46] Wang R C, Wei Z D, Ye Q, et al. A research on visual preview longitudinal and lateral cooperative control of intelligent vehicle. Autom Eng, 2019, 41(7): 763汪若塵, 魏振東, 葉青, 等. 視覺預瞄式智能車輛縱橫向協同控制研究. 汽車工程, 2019, 41(7):763 [47] Li H Q, Zhao Y Q, Lin F, et al. Research on high speed path tracking and rollover control for obstacle avoidance under emergency of vehicle. J Harbin Inst Technol, 2019, 51(7): 135 doi: 10.11918/j.issn.0367-6234.201806160李海青, 趙又群, 林棻, 等. 汽車高速緊急避障路徑跟蹤與主動防側翻控制. 哈爾濱工業大學學報, 2019, 51(7):135 doi: 10.11918/j.issn.0367-6234.201806160 [48] Wu Y, Wang L F, Zhang J Z, et al. Path following control of autonomous ground vehicle based on nonsingular terminal sliding mode and active disturbance rejection control. IEEE Trans Veh Technol, 2019, 68(7): 6379 doi: 10.1109/TVT.2019.2916982 [49] Wu Y, Wang L F, Li F. Intelligent vehicle path following control based on sliding mode active disturbance rejection control. Control Decis, 2019, 34(10): 2150吳艷, 王麗芳, 李芳. 基于滑模自抗擾的智能車路徑跟蹤控制. 控制與決策, 2019, 34(10):2150 [50] Wang Y, Cai Y F, Chen L, et al. Design of intelligent and connected vehicle path tracking controller based on model predictive control. J Mech Eng, 2019, 55(8): 136 doi: 10.3901/JME.2019.08.136王藝, 蔡英鳳, 陳龍, 等. 基于模型預測控制的智能網聯汽車路徑跟蹤控制器設計. 機械工程學報, 2019, 55(8):136 doi: 10.3901/JME.2019.08.136 [51] Liu K, Wang W, Gong J W, et al. Dynamic modeling and trajectory tracking of intelligent vehicles in off-road terrain. Trans Beijing Inst Technol, 2019, 39(9): 933劉凱, 王威, 龔建偉, 等. 越野地形下智能車輛的動力學建模與軌跡跟蹤. 北京理工大學學報, 2019, 39(9):933 [52] Bai G X, Meng Y, Liu L, et al. Path tracking control of vehicles based on variable prediction horizon and velocity. China Mech Eng, 2020, 31(11): 1277 doi: 10.3969/j.issn.1004-132X.2020.11.003白國星, 孟宇, 劉立, 等. 基于可變預測時域及速度的車輛路徑跟蹤控制. 中國機械工程, 2020, 31(11):1277 doi: 10.3969/j.issn.1004-132X.2020.11.003 [53] Wang W, Chen H Y, Ma J H, et al. Path tracking for intelligent vehicles based on Frenet coordinates and delayed control. Acta Armamentarii, 2019, 40(11): 2336 doi: 10.3969/j.issn.1000-1093.2019.11.019王威, 陳慧巖, 馬建昊, 等. 基于Frenet坐標系和控制延時補償的智能車輛路徑跟蹤. 兵工學報, 2019, 40(11):2336 doi: 10.3969/j.issn.1000-1093.2019.11.019 [54] Diao Q Q, Zhang Y N, Zhu L Y. A lateral and longitudinal fuzzy control of intelligent vehicles with double preview points for large curvature roads. China Mech Eng, 2019, 30(12): 1445 doi: 10.3969/j.issn.1004-132X.2019.12.010刁勤晴, 張雅妮, 朱凌云. 雙預瞄點智能車大曲率路徑的橫縱向模糊控制. 中國機械工程, 2019, 30(12):1445 doi: 10.3969/j.issn.1004-132X.2019.12.010 [55] Zhang B, Zong C F, Chen G Y, et al. An adaptive-prediction-horizon model prediction control for path tracking in a four-wheel independent control electric vehicle. Proc Inst Mech Eng Part D-J Automob Eng, 2019, 233(12): 3246 doi: 10.1177/0954407018821527 [56] Zhang B, Zong C F, Chen G Y, et al. Electrical vehicle path tracking based model predictive control with a laguerre function and exponential weight. IEEE Access, 2019, 7: 17082 doi: 10.1109/ACCESS.2019.2892746 [57] Yao Q Q, Tian Y. A model predictive controller with longitudinal speed compensation for autonomous vehicle path tracking. Appl Sci, 2019, 9(22): 4739 doi: 10.3390/app9224739 [58] Lee K, Jeon S, Kim H, et al. Optimal path tracking control of autonomous vehicle: Adaptive full-state linear quadratic gaussian (LQG) control. IEEE Access, 2019, 7: 109120 doi: 10.1109/ACCESS.2019.2933895 [59] Sun C Y, Zhang X, Zhou Q, et al. A model predictive controller with switched tracking error for autonomous vehicle path tracking. IEEE Access, 2019, 7: 53103 doi: 10.1109/ACCESS.2019.2912094 [60] Wang H Y, Liu B, Ping X Y, et al. Path tracking control for autonomous vehicles based on an improved MPC. IEEE Access, 2019, 7: 161064 doi: 10.1109/ACCESS.2019.2944894 [61] Guo H Y, Cao D P, Chen H, et al. Model predictive path following control for autonomous cars considering a measurable disturbance: Implementation, testing, and verification. Mech Syst Signal Process, 2019, 118: 41 doi: 10.1016/j.ymssp.2018.08.028 [62] Chen T, Chen L, Xu X, et al. Simultaneous path following and lateral stability control of 4WD-4WS autonomous electric vehicles with actuator saturation. Adv Eng Software, 2019, 128: 46 doi: 10.1016/j.advengsoft.2018.07.004 [63] Su S H, Chen G. Lateral adaptive backstepping switching control for robot-driven vehicles. Autom Eng, 2020, 42(1): 11蘇樹華, 陳剛. 機器人駕駛車輛的橫向自適應反演切換控制. 汽車工程, 2020, 42(1):11 [64] Guo N Y, Zhang X D, Zou Y, et al. A computationally efficient path following control strategy of autonomous electric vehicles with yaw motion stabilization. IEEE Trans Transp Electrification, 2020, 6(2): 728 doi: 10.1109/TTE.2020.2993862 [65] Bai G X, Liu L, Meng Y, et al. Real-time path tracking of mobile robot based on nonlinear model predictive control. Trans Chin Soc Agric Mach, 2020, 51(9): 47 doi: 10.6041/j.issn.1000-1298.2020.09.006白國星, 劉麗, 孟宇, 等. 基于非線性模型預測控制的移動機器人實時路徑跟蹤. 農業機械學報, 2020, 51(9):47 doi: 10.6041/j.issn.1000-1298.2020.09.006 [66] Li J, Tang S, Huang Z X, et al. Longitudinal and lateral coordination control method of high-speed unmanned vehicles with integrated stability. J Traffic Transp Eng, 2020, 20(2): 205李軍, 唐爽, 黃志祥, 等. 融合穩定性的高速無人駕駛車輛縱橫向協調控制方法. 交通運輸工程學報, 2020, 20(2):205 [67] Feng P P, Zhang J W, Yang W M. Observer-based state-feedback robust control for path following of autonomous ground vehicles. Proc Inst Mech Eng Part I-J Syst Control Eng, 2020, 234(2): 222 doi: 10.1177/0959651819851676 [68] Cai Y F, Li J, Sun X Q, et al. Research on hybrid control strategy for intelligent vehicle path tracking. China Mech Eng, 2020, 31(3): 289 doi: 10.3969/j.issn.1004-132X.2020.03.006蔡英鳳, 李健, 孫曉強, 等. 智能汽車路徑跟蹤混合控制策略研究. 中國機械工程, 2020, 31(3):289 doi: 10.3969/j.issn.1004-132X.2020.03.006 [69] Deng H P, Ma B, Zhao H G, et al. Path planning and tracking control of autonomous vehicle for obstacle avoidance. Acta Armamentarii, 2020, 41(3): 585 doi: 10.3969/j.issn.1000-1093.2020.03.020鄧海鵬, 麻斌, 趙海光, 等. 自主駕駛車輛緊急避障的路徑規劃與軌跡跟蹤控制. 兵工學報, 2020, 41(3):585 doi: 10.3969/j.issn.1000-1093.2020.03.020 [70] Hu C F, Zhao L X, Cao L, et al. Steering control based on model predictive control for obstacle avoidance of unmanned ground vehicle. Meas Control, 2020, 53(3-4): 501 doi: 10.1177/0020294019878871 [71] Zhang L X, Zhang T Z, Wu G Q. Robust predictive control for intelligent vehicle path tracking considering error feedback correction. J Xi'an Jiaotong Univ, 2020, 54(3): 20張亮修, 張鐵柱, 吳光強. 考慮誤差校正的智能車輛路徑跟蹤魯棒預測控制. 西安交通大學學報, 2020, 54(3):20 [72] Mohammadzadeh A, Taghavifar H. A robust fuzzy control approach for path-following control of autonomous vehicles. Soft Comput, 2020, 24(5): 3223 doi: 10.1007/s00500-019-04082-4 [73] Yuan X F, Huang G M, Shi K. Improved adaptive path following control system for autonomous vehicle in different velocities. IEEE Trans Intell Transp Syst, 2020, 21(8): 3247 doi: 10.1109/TITS.2019.2925026 [74] Zhou W, Guo X X, Pei X F, et al. Study on path planning and tracking control for intelligent vehicle based on RRT and MPC. Autom Eng, 2020, 42(9): 1151周維, 過學迅, 裴曉飛, 等. 基于RRT與MPC的智能車輛路徑規劃與跟蹤控制研究. 汽車工程, 2020, 42(9):1151 [75] Sun Z Y, Wang R C, Ye Q, et al. Investigation of intelligent vehicle path tracking based on longitudinal and lateral coordinated control. IEEE Access, 2020, 8: 105031 doi: 10.1109/ACCESS.2020.2994437 [76] Tang L Q, Yan F W, Zou B, et al. An improved kinematic model predictive control for high-speed path tracking of autonomous vehicles. IEEE Access, 2020, 8: 51400 doi: 10.1109/ACCESS.2020.2980188 [77] Cui Q J, Ding R J, Wei C F, et al. Path-tracking and lateral stabilisation for autonomous vehicles by using the steering angle envelope. Veh Syst Dyn, https://doi.org/10.1080/00423114.2020.1776344. [78] Zhang W L, Drugge L, Nybacka M, et al. Active camber for enhancing path following and yaw stability of over-actuated autonomous electric vehicles. Veh Syst Dyn, https://doi.org/10.1080/00423114.2020.1723653. [79] Zhang J X, Zhou S Y, Shi Z T, et al. Path planning and tracking control for corner overtaking of driverless vehicle using sliding mode technique with conditional integrators. Control Theory Appl, http://kns.cnki.net/kcms/detail/44.1240.tp.20201015.1122.008.html.張家旭, 周時瑩, 施正堂, 等. 采用滑模條件積分的無人駕駛汽車彎道超車路徑規劃與跟蹤控制. 控制理論與應用, http://kns.cnki.net/kcms/detail/44.1240.tp.20201015.1122.008.html. [80] Zhang J X, Wang X Z, Zhao J, et al. Path planning and discrete sliding mode tracking control for high-speed lane changing collision avoidance of vehicle. J Jilin Univ Eng Technol, https://doi.org/10.13229/j.cnki.jdxbgxb20200057.張家旭, 王欣志, 趙健, 等. 汽車高速換道避讓路徑規劃與離散滑模跟蹤控制. 吉林大學學報(工學版), https://doi.org/10.13229/j.cnki.jdxbgxb20200057. [81] Wang G D, Liu Y, Li S S, et al. Research on path tracking control under limit conditions based on tire state stiffness prediction. Acta Autom Sin, https://doi.org/10.16383/j.aas.c190349.王國棟, 劉洋, 李紹松, 等. 基于輪胎狀態剛度預測的極限工況路徑跟蹤控制研究. 自動化學報, https://doi.org/10.16383/j.aas.c190349. -