<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

多目標粒子群優化算法研究綜述

馮茜 李擎 全威 裴軒墨

馮茜, 李擎, 全威, 裴軒墨. 多目標粒子群優化算法研究綜述[J]. 工程科學學報, 2021, 43(6): 745-753. doi: 10.13374/j.issn2095-9389.2020.10.31.001
引用本文: 馮茜, 李擎, 全威, 裴軒墨. 多目標粒子群優化算法研究綜述[J]. 工程科學學報, 2021, 43(6): 745-753. doi: 10.13374/j.issn2095-9389.2020.10.31.001
FENG Qian, LI Qing, QUAN Wei, PEI Xuan-mo. Overview of multiobjective particle swarm optimization algorithm[J]. Chinese Journal of Engineering, 2021, 43(6): 745-753. doi: 10.13374/j.issn2095-9389.2020.10.31.001
Citation: FENG Qian, LI Qing, QUAN Wei, PEI Xuan-mo. Overview of multiobjective particle swarm optimization algorithm[J]. Chinese Journal of Engineering, 2021, 43(6): 745-753. doi: 10.13374/j.issn2095-9389.2020.10.31.001

多目標粒子群優化算法研究綜述

doi: 10.13374/j.issn2095-9389.2020.10.31.001
基金項目: 國家自然科學基金資助項目(61673098)
詳細信息
    通訊作者:

    E-mail:liqing@ies.ustb.edu.cn

  • 中圖分類號: TP18

Overview of multiobjective particle swarm optimization algorithm

More Information
  • 摘要: 針對多目標粒子群優化算法的研究進展進行綜述。首先,回顧了多目標優化和粒子群算法等基本理論;其次,分析了多目標優化所涉及的難點問題;再次,從最優粒子選擇策略,多樣性保持機制,收斂性提高手段,多樣性與收斂性平衡方法,迭代公式、參數、拓撲結構的改進方案5個方面綜述了近年來的最新成果;最后,指出多目標粒子群算法有待進一步解決的問題及未來的研究方向。

     

  • 圖  1  決策空間中粒子移動示意圖

    Figure  1.  Image of particle movement in the decision space

    久色视频
  • [1] He X M, Dong S H. Research on rush order insertion rescheduling problem under hybrid flow shop with multi-objective and multi-constraint. Chin J Eng, 2019, 41(11): 1450

    何小妹, 董紹華. 多目標多約束混合流水車間插單重調度問題研究. 工程科學學報, 2019, 41(11):1450
    [2] Zadeh L A. Optimality and non-scalar-valued performance criteria. IEEE Trans Autom Control, 1963, 8(1): 59 doi: 10.1109/TAC.1963.1105511
    [3] Haimes Y Y, Lasdon L S, Wismer D A. On a bicriterion formulation of the problems of integrated system identification and system optimization. IEEE Trans Syst Man Cybern, 1971, SMC-1(3): 296 doi: 10.1109/TSMC.1971.4308298
    [4] Charnes A, Cooper W W, Ferguson R O. Optimal estimation of executive compensation by linear programming. Manage Sci, 1955, 1(2): 138
    [5] Xuan G N, Cheng R W. Genetic Algorithm and Engineering Optimization. Beijing: Tsinghua University Press, 2004

    玄光南, 程潤偉. 遺傳算法與工程優化. 北京: 清華大學出版社, 2004
    [6] Tseng C H, Lu T W. Minimax multiobjective optimization in structural design. Int J Numer Methods Eng, 1990, 30(6): 1213 doi: 10.1002/nme.1620300609
    [7] Liu Q, Liu Q, Yang J P, et al. Progress of research on steelmaking?continuous casting production scheduling. Chin J Eng, 2020, 42(2): 144

    劉青, 劉倩, 楊建平, 等. 煉鋼?連鑄生產調度的研究進展. 工程科學學報, 2020, 42(2):144
    [8] Li F, Liu J C, Shi H T, et al. Multi-objective particle swarm optimization algorithm based on decomposition and differential evolution. Control Decis, 2017, 32(3): 403

    李飛, 劉建昌, 石懷濤, 等. 基于分解和差分進化的多目標粒子群優化算法. 控制與決策, 2017, 32(3):403
    [9] Zhang Y, Cheng S, Shi Y H, et al. Cost-sensitive feature selection using two-archive multi-objective artificial bee colony algorithm. Expert Syst Appl, 2019, 137: 46 doi: 10.1016/j.eswa.2019.06.044
    [10] Sani S S, Manthouri M, Farivar F. A multi-objective ant colony optimization algorithm for community detection in complex networks. J Ambient Intell Human Comput, 2020, 11(1): 5 doi: 10.1007/s12652-018-1159-7
    [11] Qiao J F, Li F, Yang S X, et al. An adaptive hybrid evolutionary immune multi-objective algorithm based on uniform distribution selection. Inf Sci, 2020, 512: 446 doi: 10.1016/j.ins.2019.08.032
    [12] Lin Q Z, Ma Y P, Chen J Y, et al. An adaptive immune-inspired multi-objective algorithm with multiple differential evolution strategies. Inf Sci, 2018, 430-431: 46 doi: 10.1016/j.ins.2017.11.030
    [13] Kennedy J, Eberhart R. Particle swarm optimization//Proceeding of ICNN’95-IEEE International Conference on Neural Networks. Perth, 1995: 1942
    [14] van den Bergh F. An Analysis of Particle Swarm Optimizers [Dissertation]. Pretoria: University of Pretoria, 2001
    [15] Coello C A C, Lechuga M S. MOPSO: A proposal for multiple objective particle swarm optimization // Proceedings of the 2002 Congress on Evolutionary Computation. Honolulu, 2002: 1051
    [16] Zhu Q L, Lin Q Z, Chen W N, et al. An external archive-guided multiobjective particle swarm optimization algorithm. IEEE Trans Cybern, 2017, 47(9): 2794 doi: 10.1109/TCYB.2017.2710133
    [17] Li X, Li X L, Wang K, et al. A multi-objective particle swarm optimization algorithm based on enhanced selection. IEEE Access, 2019, 7: 168091 doi: 10.1109/ACCESS.2019.2954542
    [18] Ali H, Khan F A. Attributed multi-objective comprehensive learning particle swarm optimization for optimal security of networks. Appl Soft Comput, 2013, 13(9): 3903 doi: 10.1016/j.asoc.2013.04.015
    [19] Cheng S, Chen M Y, Fleming P J. Improved multi-objective particle swarm optimization with preference strategy for optimal DG integration into the distribution system. Neurocomputing, 2015, 148: 23 doi: 10.1016/j.neucom.2012.08.074
    [20] García I C, Coello C A C, Arias-Monta?o A. MOPSOhv: A new hypervolume-based multi-objective particle swarm optimizer // Proceedings of the 2014 IEEE Congress on Evolutionary Computation, CEC 2014. Beijing, 2014: 266
    [21] Wei L X, Li X, Fan R, et al. A hybrid multiobjective particle swarm optimization algorithm based on R2 indicator. IEEE Access, 2018, 6: 14710 doi: 10.1109/ACCESS.2018.2812701
    [22] Wu B L, Hu W, He Z N, et al. A many-objective particle swarm optimization based on virtual Pareto front // Proceedings of the 2018 IEEE Congress on Evolutionary Computation, CEC 2018. Rio de Janeiro, 2018: 1
    [23] Li F, Liu J C, Tan S B, et al. R2-MOPSO: A multi-objective particle swarm optimizer based on R2-indicator and decomposition // Proceedings of the 2015 IEEE Congress on Evolutionary Computation, CEC 2015. Sendai, 2015: 3148
    [24] Liu W Y, Xie C, Wen J, et al. Optimization of transmission network maintenance scheduling based on niche multi-objective particle swarm algorithm. Proc Chin Soc Electr Eng, 2013, 33(4): 141

    劉文穎, 謝昶, 文晶, 等. 基于小生境多目標粒子群算法的輸電網檢修計劃優化. 中國電機工程學報, 2013, 33(4):141
    [25] Qu B Y, Li C, Liang J, et al. A self-organized speciation based multi-objective particle swarm optimizer for multimodal multi-objective problems. Appl Soft Comput, 2020, 86: 105886 doi: 10.1016/j.asoc.2019.105886
    [26] Li J P, Balazs M E, Parks G T, et al. Erratum: a species conserving genetic algorithm for multimodal function optimization. Evol Comput, 2003, 11(1): 107 doi: 10.1162/106365603321829023
    [27] Wang X W, Min Y, Gu X S. Multi-objective particle swarm optimization algorithm based on density clustering. J East China Univ Sci Technol Nat Sci Ed, 2019, 45(3): 449

    王學武, 閔永, 顧幸生. 基于密度聚類的多目標粒子群優化算法. 華東理工大學學報(自然科學版), 2019, 45(3):449
    [28] Yu H B, Tan Y, Zeng J C, et al. Surrogate-assisted hierarchical particle swarm optimization. Inf Sci, 2018, 454-455: 59 doi: 10.1016/j.ins.2018.04.062
    [29] Lü Z M, Wang L Q, Han Z Y, et al. Surrogate-assisted particle swarm optimization algorithm with Pareto active learning for expensive multi-objective optimization. IEEE/CAA J Autom Sin, 2019, 6(3): 838 doi: 10.1109/JAS.2019.1911450
    [30] Liu J C, Li F, Kong X Y, et al. Handling many-objective optimisation problems with R2 indicator and decomposition-based particle swarm optimiser. Int J Syst Sci, 2019, 50(2): 320 doi: 10.1080/00207721.2018.1552765
    [31] Gómez R H, Coello C A C. Improved metaheuristic based on the R2 indicator for many-objective optimization // GECCO 15- Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation. New York, 2015: 679
    [32] Li F, Wu Z H, Liu K R, et al. R2 indicator and objective space partition based many-objective particle swarm optimizer. Control Decis, https://doi.org/10.13195/j.kzyjc.2020.0113.

    李飛, 吳紫恒, 劉闞蓉, 等. 基于R2指標和目標空間分解的高維多目標粒子群優化算法. 控制與決策, https://doi.org/10.13195/j.kzyjc.2020.0113.
    [33] Sun X Y, Chen Y, Liu Y P, et al. Indicator-based set evolution particle swarm optimization for many-objective problems. Soft Comput, 2016, 20(6): 2219 doi: 10.1007/s00500-015-1637-1
    [34] Moubayed N A, Petrovski A, McCall J. D2MOPSO: MOPSO based on decomposition and dominance with archiving using crowding distance in objective and solution spaces. Evol Comput, 2014, 22(1): 47 doi: 10.1162/EVCO_a_00104
    [35] Li L, Wang W L, Li W K, et al. A novel ranking-based optimal guides selection strategy in MOPSO. Procedia Comput Sci, 2016, 91: 1001 doi: 10.1016/j.procs.2016.07.135
    [36] Tang B W, Zhu Z X, Shin H S, et al. A framework for multi-objective optimisation based on a new self-adaptive particle swarm optimisation algorithm. Inf Sci, 2017, 420: 364 doi: 10.1016/j.ins.2017.08.076
    [37] Yang S X, Li M Q, Liu X H, et al. A grid-based evolutionary algorithm for many-objective optimization. IEEE Trans Evol Comput, 2013, 17(5): 721 doi: 10.1109/TEVC.2012.2227145
    [38] Feng Q, Li Q, Chen P, et al. Multiobjective particle swarm optimization algorithm based on adaptive angle division. IEEE Access, 2019, 7: 87916 doi: 10.1109/ACCESS.2019.2925540
    [39] Zhan Z H, Li J J, Cao J N, et al. Multiple populations for multiple objectives: A coevolutionary technique for solving multiobjective optimization problems. IEEE Trans Cybern, 2013, 43(2): 445 doi: 10.1109/TSMCB.2012.2209115
    [40] Depolli M, Trobec R, Filipi? B. Asynchronous master-slave parallelization of differential evolution for multi-objective optimization. Evol Comput, 2013, 21(2): 261 doi: 10.1162/EVCO_a_00076
    [41] Yang Y C, Zhang T X, Yi W, et al. Deployment of multistatic radar system using multi-objective particle swarm optimisation. IET Radar Sonar Navig, 2018, 12(5): 485 doi: 10.1049/iet-rsn.2017.0351
    [42] Luo J G, Qi Y T, Xie J C, et al. A hybrid multi-objective PSO-EDA algorithm for reservoir flood control operation. Appl Soft Comput, 2015, 34: 526 doi: 10.1016/j.asoc.2015.05.036
    [43] Yao G S, Ding Y S, Jin Y C, et al. Endocrine-based coevolutionary multi-swarm for multi-objective workflow scheduling in a cloud system. Soft Comput, 2017, 21(15): 4309 doi: 10.1007/s00500-016-2063-8
    [44] Zhang W Z, Li G Q, Zhang W W, et al. A cluster based PSO with leader updating mechanism and ring-topology for multimodal multi-objective optimization. Swarm Evol Comput, 2019, 50: 100569 doi: 10.1016/j.swevo.2019.100569
    [45] Liang J, Guo Q Q, Yue C T, et al. A self-organizing multi-objective particle swarm optimization algorithm for multimodal multi-objective problems // International Conference on Swarm Intelligence. Shanghai, 2018: 550
    [46] Huang P Q, Liu J C, Tan S B, et al. Application of the hybrid multi-objective particle swarm optimization algorithm in load distribution of hot finishing mills. Control Theory Appl, 2017, 34(1): 93

    黃佩秋, 劉建昌, 譚樹彬, 等. 混合多目標粒子群優化算法在熱精軋負荷分配優化中的應用. 控制理論與應用, 2017, 34(1):93
    [47] Dai C, Wang Y P, Ye M. A new multi-objective particle swarm optimization algorithm based on decomposition. Inf Sci, 2015, 325: 541 doi: 10.1016/j.ins.2015.07.018
    [48] Qi Y T, Ma X L, Liu F, et al. MOEA/D with adaptive weight adjustment. Evol Comput, 2014, 22(2): 231 doi: 10.1162/EVCO_a_00109
    [49] Albaity H, Meshoul S, Kaban A. On extending quantum behaved particle swarm optimization to multiobjective context // Proceedings of the 2012 IEEE Congress on Evolutionary Computation, CEC 2012. Brisbane, 2012: 1
    [50] Liu T Y, Jiao L C, Ma W P, et al. Cultural quantum-behaved particle swarm optimization for environmental/economic dispatch. Appl Soft Comput, 2016, 48: 597 doi: 10.1016/j.asoc.2016.04.021
    [51] Pan A Q, Wang L, Guo W A, et al. A diversity enhanced multiobjective particle swarm optimization. Inf Sci, 2018, 436-437: 441 doi: 10.1016/j.ins.2018.01.038
    [52] Li L, Wang W L, Xu X L. Multi-objective particle swarm optimization based on global margin ranking. Inf Sci, 2016, 375: 30
    [53] Cheng T L, Chen M Y, Fleming P J, et al. A novel hybrid teaching learning based multi-objective particle swarm optimization. Neurocomputing, 2017, 222: 11 doi: 10.1016/j.neucom.2016.10.001
    [54] Yu J P, Wang W, Wu G F, et al. Game mechanism based multi-objective particle swarm optimization. Comput Eng Des, 2020, 41(4): 964

    喻金平, 王偉, 巫光福, 等. 基于博弈機制的多目標粒子群優化算法. 計算機工程與設計, 2020, 41(4):964
    [55] Zhang X Y, Zheng X T, Cheng R, et al. A competitive mechanism based multi-objective particle swarm optimizer with fast convergence. Inf Sci, 2018, 427: 63 doi: 10.1016/j.ins.2017.10.037
    [56] Coello C A C, Pulido G T, Lechuga M S. Handling multiple objectives with particle swarm optimization. IEEE Trans Evol Comput, 2004, 8(3): 256 doi: 10.1109/TEVC.2004.826067
    [57] Zhan Z H, Zhang J, Li Y, et al. Adaptive particle swarm optimization. IEEE Trans Syst Man Cybern Part B Cybern, 2009, 39(6): 1362 doi: 10.1109/TSMCB.2009.2015956
    [58] Peng G, Fang Y W, Chai D, et al. Multi-objective particle swarm optimization algorithm based on sharing-learning and Cauchy mutation // Proceedings of the 35th Chinese Control Conference. Chengdu, 2016: 9155
    [59] Zhang W, Huang W M. Multi-strategy adaptive multi-objective particle swarm optimization algorithm based on swarm partition [J/OL]. Acta Autom Sin, (2020-09-16) [2020-10-31]. http://kns.cnki.net/kcms/detail/11.2109.TP.20200915.0941.002.html.

    張偉, 黃衛民. 基于種群分區的多策略自適應多目標粒子群算法[J/OL]. 自動化學報(2020-09-16) [2020-10-31]. http://kns.cnki.net/kcms/detail/11.2109.TP.20200915.0941.002.html.
    [60] Yang J M, Ma M M, Che H J, et al. Multi-objective adaptive chaotic particle swarm optimization algorithm. Control Decis, 2015, 30(12): 2168

    楊景明, 馬明明, 車海軍, 等. 多目標自適應混沌粒子群優化算法. 控制與決策, 2015, 30(12):2168
    [61] Han M, He Y. Adaptive multi-objective particle swarm optimization with Gaussian chaotic mutation and elite learning. Control Decis, 2016, 31(8): 1372

    韓敏, 何泳. 基于高斯混沌變異和精英學習的自適應多目標粒子群算法. 控制與決策, 2016, 31(8):1372
    [62] Moslemi H, Zandieh M. Comparisons of some improving strategies on MOPSO for multi-objective (r, Q) inventory system. Expert Syst Appl, 2011, 38(10): 12051 doi: 10.1016/j.eswa.2011.01.169
    [63] Wang X W, Xue L K, Gu X S. Multi-objective particle swarm optimization algorithm based on three status coordinating searching. Control Decis, 2015, 30(11): 1945

    王學武, 薛立卡, 顧幸生. 三態協調搜索多目標粒子群優化算法. 控制與決策, 2015, 30(11):1945
    [64] Peng G, Fang Y W, Peng W S, et al. Multi-objective particle optimization algorithm based on sharing-learning and dynamic crowding distance. Optik, 2016, 127(12): 5013 doi: 10.1016/j.ijleo.2016.02.045
    [65] Li J Z, Chen W N, Zhang J, et al. A parallel implementation of multiobjective particle swarm optimization algorithm based on decomposition // Proceedings of 2015 IEEE Symposium Series on Computational Intelligence. Cape Town, 2015: 1310
    [66] Xu G, Yang Y Q, Liu B B, et al. An efficient hybrid multi-objective particle swarm optimization with a multi-objective dichotomy line search. J Comput Appl Math, 2015, 280: 310 doi: 10.1016/j.cam.2014.11.056
    [67] Cheng S X, Zhan H, Shu Z X. An innovative hybrid multi-objective particle swarm optimization with or without constraints handling. Appl Soft Comput, 2016, 47: 370 doi: 10.1016/j.asoc.2016.06.012
    [68] Yu H, Wang Y J, Chen Q, et al. Multi-objective particle swarm optimization based on multi-population dynamic cooperation. Electron Sci Technol, 2019, 32(10): 28

    于慧, 王宇嘉, 陳強, 等. 基于多種群動態協同的多目標粒子群算法. 電子科技, 2019, 32(10):28
    [69] Liu R C, Li J X, Fan J, et al. A coevolutionary technique based on multi-swarm particle swarm optimization for dynamic multi-objective optimization. Eur J Oper Res, 2017, 261(3): 1028 doi: 10.1016/j.ejor.2017.03.048
    [70] Han H G, Lu W, Zhang L, et al. Adaptive gradient multiobjective particle swarm optimization. IEEE Trans Cybern, 2018, 48(11): 3067 doi: 10.1109/TCYB.2017.2756874
    [71] Lin Q Z, Liu S B, Zhu Q L, et al. Particle swarm optimization with a balanceable fitness estimation for many-objective optimization problems. IEEE Trans Evol Comput, 2018, 22(1): 32 doi: 10.1109/TEVC.2016.2631279
    [72] Hu W, Yen G G. Adaptive multiobjective particle swarm optimization based on parallel cell coordinate system. IEEE Trans Evol Comput, 2015, 19(1): 1 doi: 10.1109/TEVC.2013.2296151
    [73] Deb K, Jain H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part I: Solving problems with box constraints. IEEE Trans Evol Comput, 2014, 18(4): 577 doi: 10.1109/TEVC.2013.2281535
    [74] Wu B L, Hu W, Hu J J, et al. Adaptive multiobjective particle swarm optimization based on evolutionary state estimation. IEEE Trans Cybern, 2019 doi: 10.1109/TCYB.2019.2949204
    [75] Figueiredo E M N, Ludermir T B, Bastos-Filho C J A. Many objective particle swarm optimization. Inf Sci, 2016, 374: 115 doi: 10.1016/j.ins.2016.09.026
    [76] Lin Q Z, Li J Q, Du Z H, et al. A novel multi-objective particle swarm optimization with multiple search strategies. Eur J Oper Res, 2015, 247(3): 732 doi: 10.1016/j.ejor.2015.06.071
    [77] Hu W, Yen G G, Luo G C. Many-objective particle swarm optimization using two-stage strategy and parallel cell coordinate system. IEEE Trans Cybern, 2017, 47(6): 1446 doi: 10.1109/TCYB.2016.2548239
    [78] Meza J, Espitia H, Montenegro C, et al. MOVPSO: vortex multi-objective particle swarm optimization. Appl Soft Comput, 2017, 52: 1042 doi: 10.1016/j.asoc.2016.09.026
    [79] Pan A Q, Tian H J, Wang L, et al. A decomposition-based unified evolutionary algorithm for many-objective problems using particle swarm optimization. Math Problems Eng, 2016, 2016: 6761545
    [80] Liu X F, Zhan Z H, Gao Y, et al. Coevolutionary particle swarm optimization with bottleneck objective learning strategy for many-objective optimization. IEEE Trans Evol Comput, 2019, 23(4): 587 doi: 10.1109/TEVC.2018.2875430
    [81] Aleti A, Moser I. A systematic literature review of adaptive parameter control methods for evolutionary algorithms. ACM Comput Surv, 2016, 49(3): 56
    [82] Han H G, Lu W, Qiao J F. An adaptive multiobjective particle swarm optimization based on multiple adaptive methods. IEEE Trans Cybern, 2017, 47(9): 2754 doi: 10.1109/TCYB.2017.2692385
    [83] Xia L R, Li R X, Liu Q Y, et al. An adaptive multi-objective particle swarm optimization algorithm based dynamic AHP and its application. Control Decis, 2015, 30(2): 215

    夏立榮, 李潤學, 劉啟玉, 等. 基于動態層次分析的自適應多目標粒子群優化算法及其應用. 控制與決策, 2015, 30(2):215
    [84] Liu Y X, Lu H, Cheng S, et al. An adaptive online parameter control algorithm for particle swarm optimization based on reinforcement learning // Proceedings of the 2019 IEEE Congress on Evolutionary Computation, CEC 2019. Wellington, 2019: 815
    [85] Hu M Q, Wu T, Weir J D. An adaptive particle swarm optimization with multiple adaptive methods. IEEE Trans Evol Comput, 2013, 17(5): 705 doi: 10.1109/TEVC.2012.2232931
    [86] Palafox L, Noman N, Iba H. Reverse engineering of gene regulatory networks using dissipative particle swarm optimization. IEEE Trans Evol Comput, 2013, 17(4): 577 doi: 10.1109/TEVC.2012.2218610
    [87] Ding S X, Chen C, Xin B, et al. A bi-objective load balancing model in a distributed simulation system using NSGA-II and MOPSO approaches. Appl Soft Comput, 2018, 63: 249 doi: 10.1016/j.asoc.2017.09.012
    [88] Yue C T, Qu B Y, Liang J. A multi-objective particle swarm optimizer using ring topology for solving multimodal multi-objective problems. IEEE Trans Evol Comput, 2018, 22(5): 805 doi: 10.1109/TEVC.2017.2754271
    [89] Gao H J, Pan D Z. A multi-objective particle swarm optimization algorithm with star structure to solve the multi-modal multi-objective problem. Comput Eng Sci, 2020, 42(8): 1472 doi: 10.3969/j.issn.1007-130X.2020.08.018

    高海軍, 潘大志. 星型結構的多目標粒子群算法求解多模態多目標問題. 計算機工程與科學, 2020, 42(8):1472 doi: 10.3969/j.issn.1007-130X.2020.08.018
  • 加載中
圖(1)
計量
  • 文章訪問數:  2943
  • HTML全文瀏覽量:  1355
  • PDF下載量:  547
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-10-31
  • 刊出日期:  2021-06-25

目錄

    /

    返回文章
    返回