[1] |
He X M, Dong S H. Research on rush order insertion rescheduling problem under hybrid flow shop with multi-objective and multi-constraint. Chin J Eng, 2019, 41(11): 1450何小妹, 董紹華. 多目標多約束混合流水車間插單重調度問題研究. 工程科學學報, 2019, 41(11):1450
|
[2] |
Zadeh L A. Optimality and non-scalar-valued performance criteria. IEEE Trans Autom Control, 1963, 8(1): 59 doi: 10.1109/TAC.1963.1105511
|
[3] |
Haimes Y Y, Lasdon L S, Wismer D A. On a bicriterion formulation of the problems of integrated system identification and system optimization. IEEE Trans Syst Man Cybern, 1971, SMC-1(3): 296 doi: 10.1109/TSMC.1971.4308298
|
[4] |
Charnes A, Cooper W W, Ferguson R O. Optimal estimation of executive compensation by linear programming. Manage Sci, 1955, 1(2): 138
|
[5] |
Xuan G N, Cheng R W. Genetic Algorithm and Engineering Optimization. Beijing: Tsinghua University Press, 2004玄光南, 程潤偉. 遺傳算法與工程優化. 北京: 清華大學出版社, 2004
|
[6] |
Tseng C H, Lu T W. Minimax multiobjective optimization in structural design. Int J Numer Methods Eng, 1990, 30(6): 1213 doi: 10.1002/nme.1620300609
|
[7] |
Liu Q, Liu Q, Yang J P, et al. Progress of research on steelmaking?continuous casting production scheduling. Chin J Eng, 2020, 42(2): 144劉青, 劉倩, 楊建平, 等. 煉鋼?連鑄生產調度的研究進展. 工程科學學報, 2020, 42(2):144
|
[8] |
Li F, Liu J C, Shi H T, et al. Multi-objective particle swarm optimization algorithm based on decomposition and differential evolution. Control Decis, 2017, 32(3): 403李飛, 劉建昌, 石懷濤, 等. 基于分解和差分進化的多目標粒子群優化算法. 控制與決策, 2017, 32(3):403
|
[9] |
Zhang Y, Cheng S, Shi Y H, et al. Cost-sensitive feature selection using two-archive multi-objective artificial bee colony algorithm. Expert Syst Appl, 2019, 137: 46 doi: 10.1016/j.eswa.2019.06.044
|
[10] |
Sani S S, Manthouri M, Farivar F. A multi-objective ant colony optimization algorithm for community detection in complex networks. J Ambient Intell Human Comput, 2020, 11(1): 5 doi: 10.1007/s12652-018-1159-7
|
[11] |
Qiao J F, Li F, Yang S X, et al. An adaptive hybrid evolutionary immune multi-objective algorithm based on uniform distribution selection. Inf Sci, 2020, 512: 446 doi: 10.1016/j.ins.2019.08.032
|
[12] |
Lin Q Z, Ma Y P, Chen J Y, et al. An adaptive immune-inspired multi-objective algorithm with multiple differential evolution strategies. Inf Sci, 2018, 430-431: 46 doi: 10.1016/j.ins.2017.11.030
|
[13] |
Kennedy J, Eberhart R. Particle swarm optimization//Proceeding of ICNN’95-IEEE International Conference on Neural Networks. Perth, 1995: 1942
|
[14] |
van den Bergh F. An Analysis of Particle Swarm Optimizers [Dissertation]. Pretoria: University of Pretoria, 2001
|
[15] |
Coello C A C, Lechuga M S. MOPSO: A proposal for multiple objective particle swarm optimization // Proceedings of the 2002 Congress on Evolutionary Computation. Honolulu, 2002: 1051
|
[16] |
Zhu Q L, Lin Q Z, Chen W N, et al. An external archive-guided multiobjective particle swarm optimization algorithm. IEEE Trans Cybern, 2017, 47(9): 2794 doi: 10.1109/TCYB.2017.2710133
|
[17] |
Li X, Li X L, Wang K, et al. A multi-objective particle swarm optimization algorithm based on enhanced selection. IEEE Access, 2019, 7: 168091 doi: 10.1109/ACCESS.2019.2954542
|
[18] |
Ali H, Khan F A. Attributed multi-objective comprehensive learning particle swarm optimization for optimal security of networks. Appl Soft Comput, 2013, 13(9): 3903 doi: 10.1016/j.asoc.2013.04.015
|
[19] |
Cheng S, Chen M Y, Fleming P J. Improved multi-objective particle swarm optimization with preference strategy for optimal DG integration into the distribution system. Neurocomputing, 2015, 148: 23 doi: 10.1016/j.neucom.2012.08.074
|
[20] |
García I C, Coello C A C, Arias-Monta?o A. MOPSOhv: A new hypervolume-based multi-objective particle swarm optimizer // Proceedings of the 2014 IEEE Congress on Evolutionary Computation, CEC 2014. Beijing, 2014: 266
|
[21] |
Wei L X, Li X, Fan R, et al. A hybrid multiobjective particle swarm optimization algorithm based on R2 indicator. IEEE Access, 2018, 6: 14710 doi: 10.1109/ACCESS.2018.2812701
|
[22] |
Wu B L, Hu W, He Z N, et al. A many-objective particle swarm optimization based on virtual Pareto front // Proceedings of the 2018 IEEE Congress on Evolutionary Computation, CEC 2018. Rio de Janeiro, 2018: 1
|
[23] |
Li F, Liu J C, Tan S B, et al. R2-MOPSO: A multi-objective particle swarm optimizer based on R2-indicator and decomposition // Proceedings of the 2015 IEEE Congress on Evolutionary Computation, CEC 2015. Sendai, 2015: 3148
|
[24] |
Liu W Y, Xie C, Wen J, et al. Optimization of transmission network maintenance scheduling based on niche multi-objective particle swarm algorithm. Proc Chin Soc Electr Eng, 2013, 33(4): 141劉文穎, 謝昶, 文晶, 等. 基于小生境多目標粒子群算法的輸電網檢修計劃優化. 中國電機工程學報, 2013, 33(4):141
|
[25] |
Qu B Y, Li C, Liang J, et al. A self-organized speciation based multi-objective particle swarm optimizer for multimodal multi-objective problems. Appl Soft Comput, 2020, 86: 105886 doi: 10.1016/j.asoc.2019.105886
|
[26] |
Li J P, Balazs M E, Parks G T, et al. Erratum: a species conserving genetic algorithm for multimodal function optimization. Evol Comput, 2003, 11(1): 107 doi: 10.1162/106365603321829023
|
[27] |
Wang X W, Min Y, Gu X S. Multi-objective particle swarm optimization algorithm based on density clustering. J East China Univ Sci Technol Nat Sci Ed, 2019, 45(3): 449王學武, 閔永, 顧幸生. 基于密度聚類的多目標粒子群優化算法. 華東理工大學學報(自然科學版), 2019, 45(3):449
|
[28] |
Yu H B, Tan Y, Zeng J C, et al. Surrogate-assisted hierarchical particle swarm optimization. Inf Sci, 2018, 454-455: 59 doi: 10.1016/j.ins.2018.04.062
|
[29] |
Lü Z M, Wang L Q, Han Z Y, et al. Surrogate-assisted particle swarm optimization algorithm with Pareto active learning for expensive multi-objective optimization. IEEE/CAA J Autom Sin, 2019, 6(3): 838 doi: 10.1109/JAS.2019.1911450
|
[30] |
Liu J C, Li F, Kong X Y, et al. Handling many-objective optimisation problems with R2 indicator and decomposition-based particle swarm optimiser. Int J Syst Sci, 2019, 50(2): 320 doi: 10.1080/00207721.2018.1552765
|
[31] |
Gómez R H, Coello C A C. Improved metaheuristic based on the R2 indicator for many-objective optimization // GECCO 15- Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation. New York, 2015: 679
|
[32] |
Li F, Wu Z H, Liu K R, et al. R2 indicator and objective space partition based many-objective particle swarm optimizer. Control Decis, https://doi.org/10.13195/j.kzyjc.2020.0113.李飛, 吳紫恒, 劉闞蓉, 等. 基于R2指標和目標空間分解的高維多目標粒子群優化算法. 控制與決策, https://doi.org/10.13195/j.kzyjc.2020.0113.
|
[33] |
Sun X Y, Chen Y, Liu Y P, et al. Indicator-based set evolution particle swarm optimization for many-objective problems. Soft Comput, 2016, 20(6): 2219 doi: 10.1007/s00500-015-1637-1
|
[34] |
Moubayed N A, Petrovski A, McCall J. D2MOPSO: MOPSO based on decomposition and dominance with archiving using crowding distance in objective and solution spaces. Evol Comput, 2014, 22(1): 47 doi: 10.1162/EVCO_a_00104
|
[35] |
Li L, Wang W L, Li W K, et al. A novel ranking-based optimal guides selection strategy in MOPSO. Procedia Comput Sci, 2016, 91: 1001 doi: 10.1016/j.procs.2016.07.135
|
[36] |
Tang B W, Zhu Z X, Shin H S, et al. A framework for multi-objective optimisation based on a new self-adaptive particle swarm optimisation algorithm. Inf Sci, 2017, 420: 364 doi: 10.1016/j.ins.2017.08.076
|
[37] |
Yang S X, Li M Q, Liu X H, et al. A grid-based evolutionary algorithm for many-objective optimization. IEEE Trans Evol Comput, 2013, 17(5): 721 doi: 10.1109/TEVC.2012.2227145
|
[38] |
Feng Q, Li Q, Chen P, et al. Multiobjective particle swarm optimization algorithm based on adaptive angle division. IEEE Access, 2019, 7: 87916 doi: 10.1109/ACCESS.2019.2925540
|
[39] |
Zhan Z H, Li J J, Cao J N, et al. Multiple populations for multiple objectives: A coevolutionary technique for solving multiobjective optimization problems. IEEE Trans Cybern, 2013, 43(2): 445 doi: 10.1109/TSMCB.2012.2209115
|
[40] |
Depolli M, Trobec R, Filipi? B. Asynchronous master-slave parallelization of differential evolution for multi-objective optimization. Evol Comput, 2013, 21(2): 261 doi: 10.1162/EVCO_a_00076
|
[41] |
Yang Y C, Zhang T X, Yi W, et al. Deployment of multistatic radar system using multi-objective particle swarm optimisation. IET Radar Sonar Navig, 2018, 12(5): 485 doi: 10.1049/iet-rsn.2017.0351
|
[42] |
Luo J G, Qi Y T, Xie J C, et al. A hybrid multi-objective PSO-EDA algorithm for reservoir flood control operation. Appl Soft Comput, 2015, 34: 526 doi: 10.1016/j.asoc.2015.05.036
|
[43] |
Yao G S, Ding Y S, Jin Y C, et al. Endocrine-based coevolutionary multi-swarm for multi-objective workflow scheduling in a cloud system. Soft Comput, 2017, 21(15): 4309 doi: 10.1007/s00500-016-2063-8
|
[44] |
Zhang W Z, Li G Q, Zhang W W, et al. A cluster based PSO with leader updating mechanism and ring-topology for multimodal multi-objective optimization. Swarm Evol Comput, 2019, 50: 100569 doi: 10.1016/j.swevo.2019.100569
|
[45] |
Liang J, Guo Q Q, Yue C T, et al. A self-organizing multi-objective particle swarm optimization algorithm for multimodal multi-objective problems // International Conference on Swarm Intelligence. Shanghai, 2018: 550
|
[46] |
Huang P Q, Liu J C, Tan S B, et al. Application of the hybrid multi-objective particle swarm optimization algorithm in load distribution of hot finishing mills. Control Theory Appl, 2017, 34(1): 93黃佩秋, 劉建昌, 譚樹彬, 等. 混合多目標粒子群優化算法在熱精軋負荷分配優化中的應用. 控制理論與應用, 2017, 34(1):93
|
[47] |
Dai C, Wang Y P, Ye M. A new multi-objective particle swarm optimization algorithm based on decomposition. Inf Sci, 2015, 325: 541 doi: 10.1016/j.ins.2015.07.018
|
[48] |
Qi Y T, Ma X L, Liu F, et al. MOEA/D with adaptive weight adjustment. Evol Comput, 2014, 22(2): 231 doi: 10.1162/EVCO_a_00109
|
[49] |
Albaity H, Meshoul S, Kaban A. On extending quantum behaved particle swarm optimization to multiobjective context // Proceedings of the 2012 IEEE Congress on Evolutionary Computation, CEC 2012. Brisbane, 2012: 1
|
[50] |
Liu T Y, Jiao L C, Ma W P, et al. Cultural quantum-behaved particle swarm optimization for environmental/economic dispatch. Appl Soft Comput, 2016, 48: 597 doi: 10.1016/j.asoc.2016.04.021
|
[51] |
Pan A Q, Wang L, Guo W A, et al. A diversity enhanced multiobjective particle swarm optimization. Inf Sci, 2018, 436-437: 441 doi: 10.1016/j.ins.2018.01.038
|
[52] |
Li L, Wang W L, Xu X L. Multi-objective particle swarm optimization based on global margin ranking. Inf Sci, 2016, 375: 30
|
[53] |
Cheng T L, Chen M Y, Fleming P J, et al. A novel hybrid teaching learning based multi-objective particle swarm optimization. Neurocomputing, 2017, 222: 11 doi: 10.1016/j.neucom.2016.10.001
|
[54] |
Yu J P, Wang W, Wu G F, et al. Game mechanism based multi-objective particle swarm optimization. Comput Eng Des, 2020, 41(4): 964喻金平, 王偉, 巫光福, 等. 基于博弈機制的多目標粒子群優化算法. 計算機工程與設計, 2020, 41(4):964
|
[55] |
Zhang X Y, Zheng X T, Cheng R, et al. A competitive mechanism based multi-objective particle swarm optimizer with fast convergence. Inf Sci, 2018, 427: 63 doi: 10.1016/j.ins.2017.10.037
|
[56] |
Coello C A C, Pulido G T, Lechuga M S. Handling multiple objectives with particle swarm optimization. IEEE Trans Evol Comput, 2004, 8(3): 256 doi: 10.1109/TEVC.2004.826067
|
[57] |
Zhan Z H, Zhang J, Li Y, et al. Adaptive particle swarm optimization. IEEE Trans Syst Man Cybern Part B Cybern, 2009, 39(6): 1362 doi: 10.1109/TSMCB.2009.2015956
|
[58] |
Peng G, Fang Y W, Chai D, et al. Multi-objective particle swarm optimization algorithm based on sharing-learning and Cauchy mutation // Proceedings of the 35th Chinese Control Conference. Chengdu, 2016: 9155
|
[59] |
Zhang W, Huang W M. Multi-strategy adaptive multi-objective particle swarm optimization algorithm based on swarm partition [J/OL]. Acta Autom Sin, (2020-09-16) [2020-10-31]. http://kns.cnki.net/kcms/detail/11.2109.TP.20200915.0941.002.html.張偉, 黃衛民. 基于種群分區的多策略自適應多目標粒子群算法[J/OL]. 自動化學報(2020-09-16) [2020-10-31]. http://kns.cnki.net/kcms/detail/11.2109.TP.20200915.0941.002.html.
|
[60] |
Yang J M, Ma M M, Che H J, et al. Multi-objective adaptive chaotic particle swarm optimization algorithm. Control Decis, 2015, 30(12): 2168楊景明, 馬明明, 車海軍, 等. 多目標自適應混沌粒子群優化算法. 控制與決策, 2015, 30(12):2168
|
[61] |
Han M, He Y. Adaptive multi-objective particle swarm optimization with Gaussian chaotic mutation and elite learning. Control Decis, 2016, 31(8): 1372韓敏, 何泳. 基于高斯混沌變異和精英學習的自適應多目標粒子群算法. 控制與決策, 2016, 31(8):1372
|
[62] |
Moslemi H, Zandieh M. Comparisons of some improving strategies on MOPSO for multi-objective (r, Q) inventory system. Expert Syst Appl, 2011, 38(10): 12051 doi: 10.1016/j.eswa.2011.01.169
|
[63] |
Wang X W, Xue L K, Gu X S. Multi-objective particle swarm optimization algorithm based on three status coordinating searching. Control Decis, 2015, 30(11): 1945王學武, 薛立卡, 顧幸生. 三態協調搜索多目標粒子群優化算法. 控制與決策, 2015, 30(11):1945
|
[64] |
Peng G, Fang Y W, Peng W S, et al. Multi-objective particle optimization algorithm based on sharing-learning and dynamic crowding distance. Optik, 2016, 127(12): 5013 doi: 10.1016/j.ijleo.2016.02.045
|
[65] |
Li J Z, Chen W N, Zhang J, et al. A parallel implementation of multiobjective particle swarm optimization algorithm based on decomposition // Proceedings of 2015 IEEE Symposium Series on Computational Intelligence. Cape Town, 2015: 1310
|
[66] |
Xu G, Yang Y Q, Liu B B, et al. An efficient hybrid multi-objective particle swarm optimization with a multi-objective dichotomy line search. J Comput Appl Math, 2015, 280: 310 doi: 10.1016/j.cam.2014.11.056
|
[67] |
Cheng S X, Zhan H, Shu Z X. An innovative hybrid multi-objective particle swarm optimization with or without constraints handling. Appl Soft Comput, 2016, 47: 370 doi: 10.1016/j.asoc.2016.06.012
|
[68] |
Yu H, Wang Y J, Chen Q, et al. Multi-objective particle swarm optimization based on multi-population dynamic cooperation. Electron Sci Technol, 2019, 32(10): 28于慧, 王宇嘉, 陳強, 等. 基于多種群動態協同的多目標粒子群算法. 電子科技, 2019, 32(10):28
|
[69] |
Liu R C, Li J X, Fan J, et al. A coevolutionary technique based on multi-swarm particle swarm optimization for dynamic multi-objective optimization. Eur J Oper Res, 2017, 261(3): 1028 doi: 10.1016/j.ejor.2017.03.048
|
[70] |
Han H G, Lu W, Zhang L, et al. Adaptive gradient multiobjective particle swarm optimization. IEEE Trans Cybern, 2018, 48(11): 3067 doi: 10.1109/TCYB.2017.2756874
|
[71] |
Lin Q Z, Liu S B, Zhu Q L, et al. Particle swarm optimization with a balanceable fitness estimation for many-objective optimization problems. IEEE Trans Evol Comput, 2018, 22(1): 32 doi: 10.1109/TEVC.2016.2631279
|
[72] |
Hu W, Yen G G. Adaptive multiobjective particle swarm optimization based on parallel cell coordinate system. IEEE Trans Evol Comput, 2015, 19(1): 1 doi: 10.1109/TEVC.2013.2296151
|
[73] |
Deb K, Jain H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part I: Solving problems with box constraints. IEEE Trans Evol Comput, 2014, 18(4): 577 doi: 10.1109/TEVC.2013.2281535
|
[74] |
Wu B L, Hu W, Hu J J, et al. Adaptive multiobjective particle swarm optimization based on evolutionary state estimation. IEEE Trans Cybern, 2019 doi: 10.1109/TCYB.2019.2949204
|
[75] |
Figueiredo E M N, Ludermir T B, Bastos-Filho C J A. Many objective particle swarm optimization. Inf Sci, 2016, 374: 115 doi: 10.1016/j.ins.2016.09.026
|
[76] |
Lin Q Z, Li J Q, Du Z H, et al. A novel multi-objective particle swarm optimization with multiple search strategies. Eur J Oper Res, 2015, 247(3): 732 doi: 10.1016/j.ejor.2015.06.071
|
[77] |
Hu W, Yen G G, Luo G C. Many-objective particle swarm optimization using two-stage strategy and parallel cell coordinate system. IEEE Trans Cybern, 2017, 47(6): 1446 doi: 10.1109/TCYB.2016.2548239
|
[78] |
Meza J, Espitia H, Montenegro C, et al. MOVPSO: vortex multi-objective particle swarm optimization. Appl Soft Comput, 2017, 52: 1042 doi: 10.1016/j.asoc.2016.09.026
|
[79] |
Pan A Q, Tian H J, Wang L, et al. A decomposition-based unified evolutionary algorithm for many-objective problems using particle swarm optimization. Math Problems Eng, 2016, 2016: 6761545
|
[80] |
Liu X F, Zhan Z H, Gao Y, et al. Coevolutionary particle swarm optimization with bottleneck objective learning strategy for many-objective optimization. IEEE Trans Evol Comput, 2019, 23(4): 587 doi: 10.1109/TEVC.2018.2875430
|
[81] |
Aleti A, Moser I. A systematic literature review of adaptive parameter control methods for evolutionary algorithms. ACM Comput Surv, 2016, 49(3): 56
|
[82] |
Han H G, Lu W, Qiao J F. An adaptive multiobjective particle swarm optimization based on multiple adaptive methods. IEEE Trans Cybern, 2017, 47(9): 2754 doi: 10.1109/TCYB.2017.2692385
|
[83] |
Xia L R, Li R X, Liu Q Y, et al. An adaptive multi-objective particle swarm optimization algorithm based dynamic AHP and its application. Control Decis, 2015, 30(2): 215夏立榮, 李潤學, 劉啟玉, 等. 基于動態層次分析的自適應多目標粒子群優化算法及其應用. 控制與決策, 2015, 30(2):215
|
[84] |
Liu Y X, Lu H, Cheng S, et al. An adaptive online parameter control algorithm for particle swarm optimization based on reinforcement learning // Proceedings of the 2019 IEEE Congress on Evolutionary Computation, CEC 2019. Wellington, 2019: 815
|
[85] |
Hu M Q, Wu T, Weir J D. An adaptive particle swarm optimization with multiple adaptive methods. IEEE Trans Evol Comput, 2013, 17(5): 705 doi: 10.1109/TEVC.2012.2232931
|
[86] |
Palafox L, Noman N, Iba H. Reverse engineering of gene regulatory networks using dissipative particle swarm optimization. IEEE Trans Evol Comput, 2013, 17(4): 577 doi: 10.1109/TEVC.2012.2218610
|
[87] |
Ding S X, Chen C, Xin B, et al. A bi-objective load balancing model in a distributed simulation system using NSGA-II and MOPSO approaches. Appl Soft Comput, 2018, 63: 249 doi: 10.1016/j.asoc.2017.09.012
|
[88] |
Yue C T, Qu B Y, Liang J. A multi-objective particle swarm optimizer using ring topology for solving multimodal multi-objective problems. IEEE Trans Evol Comput, 2018, 22(5): 805 doi: 10.1109/TEVC.2017.2754271
|
[89] |
Gao H J, Pan D Z. A multi-objective particle swarm optimization algorithm with star structure to solve the multi-modal multi-objective problem. Comput Eng Sci, 2020, 42(8): 1472 doi: 10.3969/j.issn.1007-130X.2020.08.018高海軍, 潘大志. 星型結構的多目標粒子群算法求解多模態多目標問題. 計算機工程與科學, 2020, 42(8):1472 doi: 10.3969/j.issn.1007-130X.2020.08.018
|