<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

層狀金屬復合材料的發展歷程及現狀

張婷 許浩 李仲杰 董安平 邢輝 杜大帆 孫寶德

張婷, 許浩, 李仲杰, 董安平, 邢輝, 杜大帆, 孫寶德. 層狀金屬復合材料的發展歷程及現狀[J]. 工程科學學報, 2021, 43(1): 67-75. doi: 10.13374/j.issn2095-9389.2020.06.17.002
引用本文: 張婷, 許浩, 李仲杰, 董安平, 邢輝, 杜大帆, 孫寶德. 層狀金屬復合材料的發展歷程及現狀[J]. 工程科學學報, 2021, 43(1): 67-75. doi: 10.13374/j.issn2095-9389.2020.06.17.002
ZHANG Ting, XU Hao, LI Zhong-jie, DONG An-ping, XING Hui, DU Da-fan, SUN Bao-de. Development and present situation of laminated metal composites[J]. Chinese Journal of Engineering, 2021, 43(1): 67-75. doi: 10.13374/j.issn2095-9389.2020.06.17.002
Citation: ZHANG Ting, XU Hao, LI Zhong-jie, DONG An-ping, XING Hui, DU Da-fan, SUN Bao-de. Development and present situation of laminated metal composites[J]. Chinese Journal of Engineering, 2021, 43(1): 67-75. doi: 10.13374/j.issn2095-9389.2020.06.17.002

層狀金屬復合材料的發展歷程及現狀

doi: 10.13374/j.issn2095-9389.2020.06.17.002
基金項目: 國家自然科學基金資助項目(51871152,U1760110,52071205,51821001)
詳細信息
    通訊作者:

    E-mail:apdong@sjtu.edu.cn

  • 中圖分類號: TG142.71

Development and present situation of laminated metal composites

More Information
  • 摘要: 三十多年來,多種層狀金屬復合材料的制備方法應運而生,蓬勃發展,包括爆炸復合法、軋制復合法、熱壓擴散法和沉積復合法等。爆炸復合法在中厚板的制備上具有不可替代的優勢,其產品廣泛應用于軍工、船舶、電力和化工等領域。軋制法可以批量生產大尺寸層壓板,應用最為廣泛,目前層壓板已經廣泛用于汽車、船舶和航空航天等領域。真空熱壓擴散法由于可以避免氧氣等氣體的污染,幾年來在Ti/Al、Ti/TiAl和Ti6Al4V/TiAl層狀復合材料的制備上備受關注。沉積復合法制備的層狀金屬復合材料在作為耐蝕、耐磨涂層,高強導線,人體植入材料方面表現出巨大的潛力。在綜述層狀金屬復合材料發展歷程的基礎上,介紹了層狀金屬復合材料的制備方法及各自的優缺點,并對層狀金屬復合材料目前在國內外的研究現狀進行了分析和介紹。

     

  • 圖  1  ARB制備多層板材示意圖[9]

    Figure  1.  Schematic of the preparation of multi-layer plate by ARB[9]

    圖  2  DLD制備LMCs示意圖

    Figure  2.  Schematic of LMCs prepared by DLD

    圖  3  可以通過CRB或ARB制備的雙金屬體系以及它們的晶體結構[18]

    Figure  3.  Chart of metals suitable for cold bonding by rolling and/or by applying pressure and ARB, according to lattice structure and hardness of metals[18]

    Note: The bcc, fcc, hcp, rho stand for body-centered cubic, face-centered cubic, close-packed hexagonal and rhombohedral respectively.

    圖  4  Zn/Sn復合材料ARB制備過程中的SEM照片。(a)0循環(最初的三明治結構);(b)一個循環;(c)兩個循;(d)三個循環;(e)四個循環;(f)五個循環;(g)六個循環;(h)七個循環[24]

    Figure  4.  SEM micrographs of ARB processed Zn/Sn composites after: (a) zero cycle (primary sandwich); (b) one cycle; (c) two cycles; (d) three cycles; (e) four cycles; (f) five cycles; (g) six cycles; (h) seven cycles[24]

    Note: ND and RD stand for normal direction and roll direction.

    圖  5  解析模型預測結果[29]

    Figure  5.  Prediction results of analytical model[29]

    圖  6  Al/Al層狀材料有限元預測結果與實驗結果對比[30]。(a)3道次之后的拉伸應力應變曲線;(b)、(d)實驗過程中AA1050/AA6061 LMC 1道次、3道次拉伸試驗拉伸斷口光鏡照片;(c)、(e)AA1050/AA6061 LMC 1道次、3道次拉伸試樣模擬結果

    Note: εeng stands for engineering strain.

    Figure  6.  Comparison of finite element prediction results and experimental results of Al/Al LMCs[30]: (a) strain-stress curves obtained from tensile tests of 3-ARB processed composites; tensile fracture for (b) 3-ARB, and (d) 1-ARB AA1050/AA6061 observed by OM in the experiment; simulated in the tensile sample of (c) 3-ARB, and (e) 1-ARB AA1050/AA6061

    圖  7  涂層腐蝕示意圖。(a)層狀復合涂層;(b)單種合金涂層腐蝕示意圖[14]

    Figure  7.  Corrosion schematic diagram: (a) multilayer coatings; (b) monolayer coatings[14]

    圖  8  SHM法制備的 Cu/Fe 層狀材料[45]。(a)側視圖;(b)等軸側視圖[45]

    Figure  8.  Cu/Fe fabricated using the SHM technique[45]: (a) side view; (b) isometric view[45]

    表  1  不同層狀材料ARB過程中組織和性能的變化

    Table  1.   Changes in structure and properties of different layered materials in the process of ARB

    Raw materialsThickness ratioFirst unstable materialFirst unstable passStrength variationReference
    Al/Sn0.77Sn2Decrease after 3 pass[28]
    Zn/Sn2.5Zn2Decrease after 3 pass[24]
    AA2219/AA50861AA50866Gradually increase[27]
    Al/Cu2.5Cu4Gradually increase[21]
    Cu/Zn/Al9:8:3Cu3Decrease after 5 pass[25]
    Al/Cu/Sn10:6:3Sn2Decrease after 3 pass[26]
    下載: 導出CSV

    表  2  Ag/Cu層狀復合材料的性能

    Table  2.   Properties of Ag/Cu LMCs

    MaterialYield Stress/
    MPa
    UTS/
    MPa
    Elongation/
    %
    Resistivity/
    (nΩ·m)
    Pure Ag18025±1
    Pure Cu1002805131±2
    ABRed Ag/Cu5506501632±2
    Note:UTS stands for ultimate tensile strength.
    下載: 導出CSV
    久色视频
  • [1] Liu X T, Zhang T A, Cui J Z. Technology of clad metal production and its latest progress. Mater Rev, 2002, 16(7): 41 doi: 10.3321/j.issn:1005-023X.2002.07.013

    劉曉濤, 張廷安, 崔建忠. 層狀金屬復合材料生產工藝及其新進展. 材料導報, 2002, 16(7):41 doi: 10.3321/j.issn:1005-023X.2002.07.013
    [2] Tian G M, Li X M, Zhao Y Q, et al. Research status of processing technology of laminated metal composite. Mater China, 2013(11): 696

    田廣民, 李選明, 趙永慶, 等. 層狀金屬復合材料加工技術研究現狀. 中國材料進展, 2013(11):696
    [3] Wadsworth J, Lesuer D R. Ancient and modern laminated composites—from the Great Pyramid of Gizeh to Y2K. Mater Charact, 2000, 45(4-5): 289 doi: 10.1016/S1044-5803(00)00077-2
    [4] Wright P K, Snow D A, Tay C K. Interfacial conditions and bond strength in cold pressure welding by rolling. Met Technol, 1978, 5(1): 24 doi: 10.1179/mt.1978.5.1.24
    [5] Sherby O D, Wadsworth J. Ultrahigh carbon steels, Damascus steels, and superplasticity//The 9th International Metallurgical and Materials Congress. Istanbul, 1997
    [6] Hertzberg R W. Deformation and Fracture Mechanics of Engineering Materials. 2nd Ed. New York: Wiley, 1983
    [7] Saito Y, Utsunomiya H, Tsuji N, et al. Novel ultra-high straining process for bulk materials—development of the accumulative roll-bonding (ARB) process. Acta Mater, 1999, 47(2): 579 doi: 10.1016/S1359-6454(98)00365-6
    [8] Wang J, Lei Y, Liu X H, et al. Microstructure and properties of Cu–Al–laminated composites fabricated via formation of a horizontal continuous casting composite. Chin J Eng, 2020, 42(2): 216

    王珺, 雷宇, 劉新華, 等. 水平連鑄復合成形銅鋁層狀復合材料的組織與性能. 工程科學學報, 2020, 42(2):216
    [9] Mo T Q, Chen Z J, Li B X, et al. Tailoring of interface structure and mechanical properties in ARBed 1100/ 7075 laminated composites by cold rolling. Mater Sci Eng A, 2019, 755: 97 doi: 10.1016/j.msea.2019.03.075
    [10] Gong S, Li Z, Xiao Z, er al. Research on preparation of metallic composite with explosive welding. Mater Rev, 2007, 21(Spec): 249

    龔深, 李周, 肖柱, 等. 爆炸焊接法制備金屬復合材料的研究. 材料導報, 2007, 21(專輯): 249
    [11] Chen J, Tong J G, Ren X P. Bonding behavior of 25Cr5MoA/Q235 hot rolled clad plates. J Univ Sci Technol Beijing, 2007, 29(10): 985 doi: 10.3321/j.issn:1001-053x.2007.10.004

    陳靖, 佟建國, 任學平. 25Cr5MoA/Q235鋼復合板的結合性能. 北京科技大學學報, 2007, 29(10):985 doi: 10.3321/j.issn:1001-053x.2007.10.004
    [12] Qin Q, Deng J C, Zang Y, et al. Factors influencing the combined performance of hot-rolled bimetallic composite plates prepared via hot compression. Chin J Eng, 2018, 40(4): 469

    秦勤, 鄧俊超, 臧勇, 等. 熱壓316L/Q345R復合板的結合性能. 工程科學學報, 2018, 40(4):469
    [13] Zhu H F, Sun W, Kong F T, et al. Interfacial characteristics and mechanical properties of TiAl/Ti6Al4V laminate composite (LMC) fabricated by vacuum hot pressing. Mater Sci Eng A, 2019, 742: 704 doi: 10.1016/j.msea.2018.07.086
    [14] Elias L, Hegde A C. Electrodeposition of laminar coatings of Ni-W alloy and their corrosion behaviour. Surf Coat Technol, 2015, 283: 61 doi: 10.1016/j.surfcoat.2015.10.025
    [15] Meng X J. Present status and developmental direction for manufacturing technique of laminar composite metal. CFHI Technol, 2009(6): 7 doi: 10.3969/j.issn.1673-3355.2009.06.003

    孟憲靜. 層狀金屬復合材料制備技術現狀及發展方向. 一重技術, 2009(6):7 doi: 10.3969/j.issn.1673-3355.2009.06.003
    [16] Han G, Jiang X B, Cheng F, et al. Research on explosive welding of magnesium alloy laminated composites. Eng Blast, 2018, 24(4): 71 doi: 10.3969/j.issn.1006-7051.2018.04.014

    韓剛, 蔣曉博, 程飛, 等. 鎂合金層狀復合材料的爆炸焊接研究. 工程爆破, 2018, 24(4):71 doi: 10.3969/j.issn.1006-7051.2018.04.014
    [17] Wang H, Li X F, Zhang Y, et al. Development and applications of explosive welding layered composite materials at home and abroad. China Tit Ind, 2017(1): 16

    王航, 李曉峰, 張煜, 等. 爆炸焊接層狀復合材料國內外發展現況及應用領域簡介. 中國鈦業, 2017(1):16
    [18] Li L, Nagai K, Yin F X. Progress in cold roll bonding of metals. Sci Technol Adv Mater, 2008, 9(2): 023001 doi: 10.1088/1468-6996/9/2/023001
    [19] Mo T Q, Chen Z J, Chen H, et al. Multiscale interfacial structure strengthening effect in Al alloy laminated metal composites fabricated by accumulative roll bonding. Mater Sci Eng A, 2019, 766: 138354 doi: 10.1016/j.msea.2019.138354
    [20] Kümmel F, Haus?l T, H?ppel H W, et al. Enhanced fatigue lives in AA1050A/AA5005 laminated metal composites produced by accumulative roll bonding. Acta Mater, 2016, 120: 150 doi: 10.1016/j.actamat.2016.08.039
    [21] Li X B, Zu G Y, Wang P. Microstructural development and its effects on mechanical properties of Al/Cu laminated composite. Trans Nonferrous Met Soc China, 2015, 25(1): 36 doi: 10.1016/S1003-6326(15)63576-2
    [22] Kümmel F, Diepold B, Sauer K F, et al. High lightweight potential of ultrafine-grained aluminum/steel laminated metal composites produced by sccumulative roll bonding. Adv Eng Mater, 2019, 21(1): 1800286 doi: 10.1002/adem.201800286
    [23] Rahdari M, Reihanian M, Lari Baghal S M. Microstructural control and layer continuity in deformation bonding of metallic laminated composites. Mater Sci Eng A, 2018, 738: 98 doi: 10.1016/j.msea.2018.09.080
    [24] Mashhadi A, Atrian A, Ghalandari L. Mechanical and microstructural investigation of Zn/Sn multilayered composites fabricated by accumulative roll bonding (ARB) process. J Alloys Compd, 2017, 727: 1314 doi: 10.1016/j.jallcom.2017.08.241
    [25] Mahdavian M M, Ghalandari L, Reihanian M. Accumulative roll bonding of multilayered Cu/Zn/Al: an evaluation of microstructure and mechanical properties. Mater Sci Eng A, 2013, 579: 99 doi: 10.1016/j.msea.2013.05.002
    [26] Mahdavian M M, Khatami-Hamedani H, Abedi H R. Macrostructure evolution and mechanical properties of accumulative roll bonded Al/Cu/Sn multilayer composite. J Alloys Compd, 2017, 703: 605 doi: 10.1016/j.jallcom.2017.01.300
    [27] Roy S, Nataraj B R, Suwas S, et al. Accumulative roll bonding of aluminum alloys 2219/5086 laminates: microstructural evolution and tensile properties. Mater Des, 2012, 36: 529 doi: 10.1016/j.matdes.2011.11.015
    [28] Ghalandari L, Mahdavian M, Reihanian M, et al. Production of Al/Sn multilayer composite by accumulative roll bonding (ARB): a study of microstructure and mechanical properties. Mater Sci Eng A, 2016, 661: 179 doi: 10.1016/j.msea.2016.02.070
    [29] Reihanian M, Naseri M. An analytical approach for necking and fracture of hard layer during accumulative roll bonding (ARB) of metallic multilayer. Mater Des, 2016, 89: 1213 doi: 10.1016/j.matdes.2015.10.088
    [30] Wang H, Su L H, Yu H L, et al. A new finite element model for multi-cycle accumulative roll-bonding process and experiment verification. Mater Sci Eng A, 2018, 726: 93 doi: 10.1016/j.msea.2018.04.040
    [31] Rohatgi A, Harach D J, Vecchio K S, rt al. Resistance-curve and fracture behavior of Ti–Al3Ti metallic-intermetallic laminate (MIL) composites. Acta Mater, 2003, 51(10): 2933 doi: 10.1016/S1359-6454(03)00108-3
    [32] Fan M Y, Luo Z F, Fu Z X, et al. Vacuum hot pressing and fatigue behaviors of Ti/Al laminate composites. Vacuum, 2018, 154: 101 doi: 10.1016/j.vacuum.2018.04.047
    [33] Jiao F F, Liu M Y, Jiang F C, et al. Continuous carbon fiber reinforced Ti/Al3Ti metal-intermetallic laminate (MIL) composites fabricated using ultrasonic consolidation assisted hot pressing sintering. Mater Sci Eng A, 2019, 765: 138255 doi: 10.1016/j.msea.2019.138255
    [34] Torabinejad V, Aliofkhazraei M, Rouhaghdam A S, et al. Tribological performance of Ni–Fe–Al2O3 multilayer coatings deposited by pulse electrodeposition. Wear, 2017, 380-381: 115 doi: 10.1016/j.wear.2017.03.013
    [35] Allahyarzadeh M H, Aliofkhazraei M, Rouhaghdam A S, et al. Electrodeposition mechanism and corrosion behavior of multilayer nanocrystalline nickel-tungsten alloy. Electrochim Acta, 2017, 258: 883 doi: 10.1016/j.electacta.2017.11.139
    [36] Peng C, Zhao Y H, Jin S J, et al. Antibacterial TiCu/TiCuN multilayer films with good corrosion resistance deposited by axial magnetic field-enhanced arc ion plating. ACS Appl Mater Interfaces, 2019, 11(1): 125 doi: 10.1021/acsami.8b14038
    [37] Zhang L, Meng L. Evolution of microstructure and electrical resistivity of Cu–12wt.%Ag filamentary microcomposite with drawing deformation. Scripta Mater, 2005, 52(12): 1187 doi: 10.1016/j.scriptamat.2005.03.016
    [38] Ghalandari L, Moshksar M M. High-strength and high-conductive Cu/Ag multilayer produced by ARB. J Alloys Compd, 2010, 506(1): 172 doi: 10.1016/j.jallcom.2010.06.172
    [39] Huo J Z, Wei M Z, Ma Y J, et al. The enhanced strength and electrical conductivity in Ag/Cu multilayers by annealing process. Mater Sci Eng A, 2020, 772: 138818 doi: 10.1016/j.msea.2019.138818
    [40] DebRoy T, Wei H L, Zuback J S, et al. Additive manufacturing of metallic components - Process, structure and properties. Prog Mater Sci, 2018, 92: 112 doi: 10.1016/j.pmatsci.2017.10.001
    [41] Lima D D, Mantri S A, Mikler C V, et al. Laser additive processing of a functionally graded internal fracture fixation plate. Mater Des, 2017, 130: 8 doi: 10.1016/j.matdes.2017.05.034
    [42] Behera R R, Hasan A, Sankar M S, et al. Laser cladding with HA and functionally graded TiO2-HA precursors on Ti–6Al–4V alloy for enhancing bioactivity and cyto-compatibility. Surf Coat Technol, 2018, 352: 420 doi: 10.1016/j.surfcoat.2018.08.044
    [43] Liu W P, DuPont J N. Fabrication of functionally graded TiC/Ti composites by laser engineered net shaping. Scripta Mater, 2003, 48(9): 1337 doi: 10.1016/S1359-6462(03)00020-4
    [44] Zhang T, Xu H, Li Z J, et al. Microstructure and properties of TC4/TNTZO multi-layered composite by direct laser deposition. J Mech Behav Biomed Mater, 2020, 109: 103842 doi: 10.1016/j.jmbbm.2020.103842
    [45] Markandan K, Lim R, Kanaujia P K, et. al. Additive manufacturing of composite materials and functionally graded structures using selective heat melting technique. J Mater Sci Technol, 2020, 47: 243 doi: 10.1016/j.jmst.2019.12.016
    [46] Du D F, Haley J C, Dong A P, et al. Influence of static magnetic field on microstructure and mechanical behavior of selective laser melted AlSi10Mg alloy. Mater Des, 2019, 181: 107923 doi: 10.1016/j.matdes.2019.107923
    [47] Todaro C J, Easton M A, Qiu D, et al. Grain structure control during metal 3D printing by high-intensity ultrasound. Nat Commun, 2020, 11: 142 doi: 10.1038/s41467-019-13874-z
    [48] Cohades A, Cetin A, Mortensen A. Designing laminated metal composites for tensile ductility. Mater Des, 2015, 66: 412 doi: 10.1016/j.matdes.2014.08.061
  • 加載中
圖(8) / 表(2)
計量
  • 文章訪問數:  6789
  • HTML全文瀏覽量:  1390
  • PDF下載量:  427
  • 被引次數: 0
出版歷程
  • 收稿日期:  2020-06-17
  • 刊出日期:  2021-01-25

目錄

    /

    返回文章
    返回