-
摘要: 三十多年來,多種層狀金屬復合材料的制備方法應運而生,蓬勃發展,包括爆炸復合法、軋制復合法、熱壓擴散法和沉積復合法等。爆炸復合法在中厚板的制備上具有不可替代的優勢,其產品廣泛應用于軍工、船舶、電力和化工等領域。軋制法可以批量生產大尺寸層壓板,應用最為廣泛,目前層壓板已經廣泛用于汽車、船舶和航空航天等領域。真空熱壓擴散法由于可以避免氧氣等氣體的污染,幾年來在Ti/Al、Ti/TiAl和Ti6Al4V/TiAl層狀復合材料的制備上備受關注。沉積復合法制備的層狀金屬復合材料在作為耐蝕、耐磨涂層,高強導線,人體植入材料方面表現出巨大的潛力。在綜述層狀金屬復合材料發展歷程的基礎上,介紹了層狀金屬復合材料的制備方法及各自的優缺點,并對層狀金屬復合材料目前在國內外的研究現狀進行了分析和介紹。Abstract: Laminated metal composites are composed of two or more metals or alloys, which integrate various excellent properties of the component materials and exhibit good comprehensive properties. The history of laminated metal composites can be traced back to more than 800 BC, and their systematic research began in the 1970s. Over the past 30 years, various methods have been invented to fabricate laminated metal composites, including explosive bonding, rolling bonding, hot-pressing bonding, and deposition bonding. Explosive bounding method has irreplaceable advantages in the preparation of medium thick plates with its products being widely used in military industry, ship, electric power, chemical industry, and other fields. On the other hand, rolling bonding is most widely used because of its ability of large quantity production. Cold roll bonding (CRB) and accumulative roll bonding (ARB) are two representative laminate preparation technologies that are utilized in the fabrication of a large number of material systems. Up to now, laminates prepared by rolling bonding are widely used in automobile, ship, aerospace, and other fields. The preparation of Ti/Al, Ti/TiAl, and Ti6Al4V/TiAl layered composites via vacuum hot-pressing bonding has attracted much attention in recent years because of its ability to avoid gas pollution such as oxygen production. Moreover, laminated metal composites produced by deposition bonding have great potential as corrosion resistant coatings, wear-resistant coatings, and high-strength conductors and implants. Although laminated metal composites have been well developed, there are still various problems to be solved. For some soft/hard material systems, the hard layer introduces plastic instability during the rolling process that destroys the continuity between layers. As a consequence, serious weakening of the comprehensive performance of the laminates is observed. Furthermore, only few studies on the design and new processes of laminated metal materials have been conducted. This paper reviewed the development of laminated metal composites, introduced the preparation methods and advantages and disadvantages of layered metal composites, and analyzed the research status of laminated metal composites at home and abroad.
-
Key words:
- laminated metal composites /
- development /
- method /
- research status /
- development prospect
-
圖 3 可以通過CRB或ARB制備的雙金屬體系以及它們的晶體結構[18]
Figure 3. Chart of metals suitable for cold bonding by rolling and/or by applying pressure and ARB, according to lattice structure and hardness of metals[18]
Note: The bcc, fcc, hcp, rho stand for body-centered cubic, face-centered cubic, close-packed hexagonal and rhombohedral respectively.
圖 4 Zn/Sn復合材料ARB制備過程中的SEM照片。(a)0循環(最初的三明治結構);(b)一個循環;(c)兩個循;(d)三個循環;(e)四個循環;(f)五個循環;(g)六個循環;(h)七個循環[24]
Figure 4. SEM micrographs of ARB processed Zn/Sn composites after: (a) zero cycle (primary sandwich); (b) one cycle; (c) two cycles; (d) three cycles; (e) four cycles; (f) five cycles; (g) six cycles; (h) seven cycles[24]
Note: ND and RD stand for normal direction and roll direction.
圖 6 Al/Al層狀材料有限元預測結果與實驗結果對比[30]。(a)3道次之后的拉伸應力應變曲線;(b)、(d)實驗過程中AA1050/AA6061 LMC 1道次、3道次拉伸試驗拉伸斷口光鏡照片;(c)、(e)AA1050/AA6061 LMC 1道次、3道次拉伸試樣模擬結果
Note: εeng stands for engineering strain.
Figure 6. Comparison of finite element prediction results and experimental results of Al/Al LMCs[30]: (a) strain-stress curves obtained from tensile tests of 3-ARB processed composites; tensile fracture for (b) 3-ARB, and (d) 1-ARB AA1050/AA6061 observed by OM in the experiment; simulated in the tensile sample of (c) 3-ARB, and (e) 1-ARB AA1050/AA6061
表 1 不同層狀材料ARB過程中組織和性能的變化
Table 1. Changes in structure and properties of different layered materials in the process of ARB
Raw materials Thickness ratio First unstable material First unstable pass Strength variation Reference Al/Sn 0.77 Sn 2 Decrease after 3 pass [28] Zn/Sn 2.5 Zn 2 Decrease after 3 pass [24] AA2219/AA5086 1 AA5086 6 Gradually increase [27] Al/Cu 2.5 Cu 4 Gradually increase [21] Cu/Zn/Al 9:8:3 Cu 3 Decrease after 5 pass [25] Al/Cu/Sn 10:6:3 Sn 2 Decrease after 3 pass [26] 表 2 Ag/Cu層狀復合材料的性能
Table 2. Properties of Ag/Cu LMCs
Material Yield Stress/
MPaUTS/
MPaElongation/
%Resistivity/
(nΩ·m)Pure Ag — 180 — 25±1 Pure Cu 100 280 51 31±2 ABRed Ag/Cu 550 650 16 32±2 Note:UTS stands for ultimate tensile strength. -
參考文獻
[1] Liu X T, Zhang T A, Cui J Z. Technology of clad metal production and its latest progress. Mater Rev, 2002, 16(7): 41 doi: 10.3321/j.issn:1005-023X.2002.07.013劉曉濤, 張廷安, 崔建忠. 層狀金屬復合材料生產工藝及其新進展. 材料導報, 2002, 16(7):41 doi: 10.3321/j.issn:1005-023X.2002.07.013 [2] Tian G M, Li X M, Zhao Y Q, et al. Research status of processing technology of laminated metal composite. Mater China, 2013(11): 696田廣民, 李選明, 趙永慶, 等. 層狀金屬復合材料加工技術研究現狀. 中國材料進展, 2013(11):696 [3] Wadsworth J, Lesuer D R. Ancient and modern laminated composites—from the Great Pyramid of Gizeh to Y2K. Mater Charact, 2000, 45(4-5): 289 doi: 10.1016/S1044-5803(00)00077-2 [4] Wright P K, Snow D A, Tay C K. Interfacial conditions and bond strength in cold pressure welding by rolling. Met Technol, 1978, 5(1): 24 doi: 10.1179/mt.1978.5.1.24 [5] Sherby O D, Wadsworth J. Ultrahigh carbon steels, Damascus steels, and superplasticity//The 9th International Metallurgical and Materials Congress. Istanbul, 1997 [6] Hertzberg R W. Deformation and Fracture Mechanics of Engineering Materials. 2nd Ed. New York: Wiley, 1983 [7] Saito Y, Utsunomiya H, Tsuji N, et al. Novel ultra-high straining process for bulk materials—development of the accumulative roll-bonding (ARB) process. Acta Mater, 1999, 47(2): 579 doi: 10.1016/S1359-6454(98)00365-6 [8] Wang J, Lei Y, Liu X H, et al. Microstructure and properties of Cu–Al–laminated composites fabricated via formation of a horizontal continuous casting composite. Chin J Eng, 2020, 42(2): 216王珺, 雷宇, 劉新華, 等. 水平連鑄復合成形銅鋁層狀復合材料的組織與性能. 工程科學學報, 2020, 42(2):216 [9] Mo T Q, Chen Z J, Li B X, et al. Tailoring of interface structure and mechanical properties in ARBed 1100/ 7075 laminated composites by cold rolling. Mater Sci Eng A, 2019, 755: 97 doi: 10.1016/j.msea.2019.03.075 [10] Gong S, Li Z, Xiao Z, er al. Research on preparation of metallic composite with explosive welding. Mater Rev, 2007, 21(Spec): 249龔深, 李周, 肖柱, 等. 爆炸焊接法制備金屬復合材料的研究. 材料導報, 2007, 21(專輯): 249 [11] Chen J, Tong J G, Ren X P. Bonding behavior of 25Cr5MoA/Q235 hot rolled clad plates. J Univ Sci Technol Beijing, 2007, 29(10): 985 doi: 10.3321/j.issn:1001-053x.2007.10.004陳靖, 佟建國, 任學平. 25Cr5MoA/Q235鋼復合板的結合性能. 北京科技大學學報, 2007, 29(10):985 doi: 10.3321/j.issn:1001-053x.2007.10.004 [12] Qin Q, Deng J C, Zang Y, et al. Factors influencing the combined performance of hot-rolled bimetallic composite plates prepared via hot compression. Chin J Eng, 2018, 40(4): 469秦勤, 鄧俊超, 臧勇, 等. 熱壓316L/Q345R復合板的結合性能. 工程科學學報, 2018, 40(4):469 [13] Zhu H F, Sun W, Kong F T, et al. Interfacial characteristics and mechanical properties of TiAl/Ti6Al4V laminate composite (LMC) fabricated by vacuum hot pressing. Mater Sci Eng A, 2019, 742: 704 doi: 10.1016/j.msea.2018.07.086 [14] Elias L, Hegde A C. Electrodeposition of laminar coatings of Ni-W alloy and their corrosion behaviour. Surf Coat Technol, 2015, 283: 61 doi: 10.1016/j.surfcoat.2015.10.025 [15] Meng X J. Present status and developmental direction for manufacturing technique of laminar composite metal. CFHI Technol, 2009(6): 7 doi: 10.3969/j.issn.1673-3355.2009.06.003孟憲靜. 層狀金屬復合材料制備技術現狀及發展方向. 一重技術, 2009(6):7 doi: 10.3969/j.issn.1673-3355.2009.06.003 [16] Han G, Jiang X B, Cheng F, et al. Research on explosive welding of magnesium alloy laminated composites. Eng Blast, 2018, 24(4): 71 doi: 10.3969/j.issn.1006-7051.2018.04.014韓剛, 蔣曉博, 程飛, 等. 鎂合金層狀復合材料的爆炸焊接研究. 工程爆破, 2018, 24(4):71 doi: 10.3969/j.issn.1006-7051.2018.04.014 [17] Wang H, Li X F, Zhang Y, et al. Development and applications of explosive welding layered composite materials at home and abroad. China Tit Ind, 2017(1): 16王航, 李曉峰, 張煜, 等. 爆炸焊接層狀復合材料國內外發展現況及應用領域簡介. 中國鈦業, 2017(1):16 [18] Li L, Nagai K, Yin F X. Progress in cold roll bonding of metals. Sci Technol Adv Mater, 2008, 9(2): 023001 doi: 10.1088/1468-6996/9/2/023001 [19] Mo T Q, Chen Z J, Chen H, et al. Multiscale interfacial structure strengthening effect in Al alloy laminated metal composites fabricated by accumulative roll bonding. Mater Sci Eng A, 2019, 766: 138354 doi: 10.1016/j.msea.2019.138354 [20] Kümmel F, Haus?l T, H?ppel H W, et al. Enhanced fatigue lives in AA1050A/AA5005 laminated metal composites produced by accumulative roll bonding. Acta Mater, 2016, 120: 150 doi: 10.1016/j.actamat.2016.08.039 [21] Li X B, Zu G Y, Wang P. Microstructural development and its effects on mechanical properties of Al/Cu laminated composite. Trans Nonferrous Met Soc China, 2015, 25(1): 36 doi: 10.1016/S1003-6326(15)63576-2 [22] Kümmel F, Diepold B, Sauer K F, et al. High lightweight potential of ultrafine-grained aluminum/steel laminated metal composites produced by sccumulative roll bonding. Adv Eng Mater, 2019, 21(1): 1800286 doi: 10.1002/adem.201800286 [23] Rahdari M, Reihanian M, Lari Baghal S M. Microstructural control and layer continuity in deformation bonding of metallic laminated composites. Mater Sci Eng A, 2018, 738: 98 doi: 10.1016/j.msea.2018.09.080 [24] Mashhadi A, Atrian A, Ghalandari L. Mechanical and microstructural investigation of Zn/Sn multilayered composites fabricated by accumulative roll bonding (ARB) process. J Alloys Compd, 2017, 727: 1314 doi: 10.1016/j.jallcom.2017.08.241 [25] Mahdavian M M, Ghalandari L, Reihanian M. Accumulative roll bonding of multilayered Cu/Zn/Al: an evaluation of microstructure and mechanical properties. Mater Sci Eng A, 2013, 579: 99 doi: 10.1016/j.msea.2013.05.002 [26] Mahdavian M M, Khatami-Hamedani H, Abedi H R. Macrostructure evolution and mechanical properties of accumulative roll bonded Al/Cu/Sn multilayer composite. J Alloys Compd, 2017, 703: 605 doi: 10.1016/j.jallcom.2017.01.300 [27] Roy S, Nataraj B R, Suwas S, et al. Accumulative roll bonding of aluminum alloys 2219/5086 laminates: microstructural evolution and tensile properties. Mater Des, 2012, 36: 529 doi: 10.1016/j.matdes.2011.11.015 [28] Ghalandari L, Mahdavian M, Reihanian M, et al. Production of Al/Sn multilayer composite by accumulative roll bonding (ARB): a study of microstructure and mechanical properties. Mater Sci Eng A, 2016, 661: 179 doi: 10.1016/j.msea.2016.02.070 [29] Reihanian M, Naseri M. An analytical approach for necking and fracture of hard layer during accumulative roll bonding (ARB) of metallic multilayer. Mater Des, 2016, 89: 1213 doi: 10.1016/j.matdes.2015.10.088 [30] Wang H, Su L H, Yu H L, et al. A new finite element model for multi-cycle accumulative roll-bonding process and experiment verification. Mater Sci Eng A, 2018, 726: 93 doi: 10.1016/j.msea.2018.04.040 [31] Rohatgi A, Harach D J, Vecchio K S, rt al. Resistance-curve and fracture behavior of Ti–Al3Ti metallic-intermetallic laminate (MIL) composites. Acta Mater, 2003, 51(10): 2933 doi: 10.1016/S1359-6454(03)00108-3 [32] Fan M Y, Luo Z F, Fu Z X, et al. Vacuum hot pressing and fatigue behaviors of Ti/Al laminate composites. Vacuum, 2018, 154: 101 doi: 10.1016/j.vacuum.2018.04.047 [33] Jiao F F, Liu M Y, Jiang F C, et al. Continuous carbon fiber reinforced Ti/Al3Ti metal-intermetallic laminate (MIL) composites fabricated using ultrasonic consolidation assisted hot pressing sintering. Mater Sci Eng A, 2019, 765: 138255 doi: 10.1016/j.msea.2019.138255 [34] Torabinejad V, Aliofkhazraei M, Rouhaghdam A S, et al. Tribological performance of Ni–Fe–Al2O3 multilayer coatings deposited by pulse electrodeposition. Wear, 2017, 380-381: 115 doi: 10.1016/j.wear.2017.03.013 [35] Allahyarzadeh M H, Aliofkhazraei M, Rouhaghdam A S, et al. Electrodeposition mechanism and corrosion behavior of multilayer nanocrystalline nickel-tungsten alloy. Electrochim Acta, 2017, 258: 883 doi: 10.1016/j.electacta.2017.11.139 [36] Peng C, Zhao Y H, Jin S J, et al. Antibacterial TiCu/TiCuN multilayer films with good corrosion resistance deposited by axial magnetic field-enhanced arc ion plating. ACS Appl Mater Interfaces, 2019, 11(1): 125 doi: 10.1021/acsami.8b14038 [37] Zhang L, Meng L. Evolution of microstructure and electrical resistivity of Cu–12wt.%Ag filamentary microcomposite with drawing deformation. Scripta Mater, 2005, 52(12): 1187 doi: 10.1016/j.scriptamat.2005.03.016 [38] Ghalandari L, Moshksar M M. High-strength and high-conductive Cu/Ag multilayer produced by ARB. J Alloys Compd, 2010, 506(1): 172 doi: 10.1016/j.jallcom.2010.06.172 [39] Huo J Z, Wei M Z, Ma Y J, et al. The enhanced strength and electrical conductivity in Ag/Cu multilayers by annealing process. Mater Sci Eng A, 2020, 772: 138818 doi: 10.1016/j.msea.2019.138818 [40] DebRoy T, Wei H L, Zuback J S, et al. Additive manufacturing of metallic components - Process, structure and properties. Prog Mater Sci, 2018, 92: 112 doi: 10.1016/j.pmatsci.2017.10.001 [41] Lima D D, Mantri S A, Mikler C V, et al. Laser additive processing of a functionally graded internal fracture fixation plate. Mater Des, 2017, 130: 8 doi: 10.1016/j.matdes.2017.05.034 [42] Behera R R, Hasan A, Sankar M S, et al. Laser cladding with HA and functionally graded TiO2-HA precursors on Ti–6Al–4V alloy for enhancing bioactivity and cyto-compatibility. Surf Coat Technol, 2018, 352: 420 doi: 10.1016/j.surfcoat.2018.08.044 [43] Liu W P, DuPont J N. Fabrication of functionally graded TiC/Ti composites by laser engineered net shaping. Scripta Mater, 2003, 48(9): 1337 doi: 10.1016/S1359-6462(03)00020-4 [44] Zhang T, Xu H, Li Z J, et al. Microstructure and properties of TC4/TNTZO multi-layered composite by direct laser deposition. J Mech Behav Biomed Mater, 2020, 109: 103842 doi: 10.1016/j.jmbbm.2020.103842 [45] Markandan K, Lim R, Kanaujia P K, et. al. Additive manufacturing of composite materials and functionally graded structures using selective heat melting technique. J Mater Sci Technol, 2020, 47: 243 doi: 10.1016/j.jmst.2019.12.016 [46] Du D F, Haley J C, Dong A P, et al. Influence of static magnetic field on microstructure and mechanical behavior of selective laser melted AlSi10Mg alloy. Mater Des, 2019, 181: 107923 doi: 10.1016/j.matdes.2019.107923 [47] Todaro C J, Easton M A, Qiu D, et al. Grain structure control during metal 3D printing by high-intensity ultrasound. Nat Commun, 2020, 11: 142 doi: 10.1038/s41467-019-13874-z [48] Cohades A, Cetin A, Mortensen A. Designing laminated metal composites for tensile ductility. Mater Des, 2015, 66: 412 doi: 10.1016/j.matdes.2014.08.061 -