-
摘要: 鋁脫氧齒輪鋼中易生成大量的高熔點Al2O3類夾雜物,容易導致水口結瘤及鋼材性能惡化,目前較常采用鈣處理將鋼中高熔點的Al2O3類夾雜物改性為低熔點的鈣鋁酸鹽類夾雜物。合理的鈣處理可以減輕水口結瘤并提高連鑄過程鋼液的可澆性,工業試驗研究了喂鈣前鋼液中T.Ca含量、喂鈣速度、喂鈣量、凈空高度及渣厚等參數對齒輪鋼中鈣收得率的影響,并在1.5 m·s?1的喂鈣速度條件下研究了不同喂鈣量對鈣處理過程中齒輪鋼中非金屬夾雜物改性的影響。研究結果表明,當喂鈣前鋼液中T.Ca的質量分數小于10×10?6,喂鈣速度為1.5 m·s?1,適當降低喂鈣量和凈空高度和渣厚,鋼液中鈣收得率均高于20%。當鋼液中T.Ca的質量分數高于17×10?6時,鋼中生成大量高熔點CaS型夾雜物,三元相圖中夾雜物的平均質量分數遠離液相區。隨著齒輪鋼中T.Ca含量的增加,夾雜物的平均尺寸和數密度逐漸增加。熱力學計算結果與工業試驗鈣處理對鋼中非金屬夾雜物改性效果具有較好的一致性。Abstract: Obtaining high-quality gear steel calls for strict requirements on the oxygen content, shape, composition, size, and distribution of nonmetallic inclusions to ensure high-quality steel and castability of the molten steel during the continuous casting process. Al2O3 inclusions with high melting point are easily generated in Al-deoxidized gear steel, and they easily result in nozzle clogging and deterioration in the properties of the steel. A reasonable calcium treatment can reduce the nozzle clogging and increase improving the castability of the molten steel, and thus it has been widely used in steel plants. Calcium treatment is often used to convert Al2O3 inclusions with high melting point to calcium aluminate with low melting point. The factors of calcium treatment on nonmetallic inclusions in gear steel were investigated through industrial trials. The dependency of calcium yield on various factors, namely, the amount of calcium addition, feeding speed of calcium wire, and feeding position and slag thickness were discussed. The effect of the amount of calcium addition on nonmetallic inclusions in the molten steel was studied at a feeding rate of 1.5 m·s?1. With the initial mass fraction of T.Ca lower than 10×10?6 in the steel and a feeding rate of 1.5 m·s?1, the calcium yield can be higher than 20% if the amount of calcium addition, clearance height, and slag thickness during the refining process are appropriate. Large numbers of nonmetallic CaS inclusions with high melting point are formed in the molten steel with the mass fraction of T.Ca higher than 17×10?6, and the inclusions are formed far away from the liquidus region. With increase in the T.Ca content in the steel, the average size and number density of the nonmetallic inclusions gradually increase. The effect of calcium treatment on the modification of nonmetallic inclusions studied by thermodynamic calculation results agrees well with the measurements taken via industrial trials.
-
Key words:
- calcium treatment /
- calcium yield /
- nonmetallic inclusions /
- gear steel /
- thermodynamic calculation
-
表 1 不同喂鈣量爐次中間包內鋼液的主要成分(質量分數)
Table 1. Main composition of the molten steel in the tundish with different calcium feeding heats
% Heat No. C Si Mn Cr Ti P S T.Al [Al] T.Ca 1# 0.21 0.25 0.87 1.08 0.057 0.021 0.001 0.019 0.016 0.0029 2# 0.19 0.29 0.88 1.08 0.053 0.013 0.001 0.022 0.021 0.0017 3# 0.18 0.28 0.88 1.08 0.057 0.017 0.001 0.026 0.024 0.0013 -
參考文獻
[1] Zhang L F. Non-Metallic Inclusions in Steels: Fundamentals. Beijing: Metallurgical Industry Press, 2019.張立峰. 鋼中非金屬夾雜物. 北京: 冶金工業出版社, 2019. [2] Li J G, Zeng Y N, Wang S H, et al. Research on the non-metallic inclusion in 20CrMnTi steel during the process of refining and casting. Iron Steel Van Tit, 2010, 31(1): 56 doi: 10.7513/j.issn.1004-7638.2010.01.011李俊國, 曾亞南, 王樹華, 等. 20CrMnTi冶煉過程中夾雜物行為研究. 鋼鐵釩鈦, 2010, 31(1):56 doi: 10.7513/j.issn.1004-7638.2010.01.011 [3] Zhang L F. Several important scientific research points of non-metallic inclusions in steel. Steelmaking, 2016, 32(4): 1張立峰. 鋼中非金屬夾雜物幾個需要深入研究的課題. 煉鋼, 2016, 32(4):1 [4] Li S S, Ren Y, Zhang L F, et al. Study on CaO and CaS inclusions in pipeline steel during refining process. J Univ Sci Technol Beijing, 2014, 36(Suppl 1): 168李樹森, 任英, 張立峰, 等. 管線鋼精煉過程中夾雜物CaO和CaS的研究. 北京科技大學學報, 2014, 36(增刊 1):168 [5] Wu H J, Lu P Y, Yue F, et al. Effect of calciumtreatmenton sulfide inclusions in steel with medium sulphurcontent. J Univ Sci Technol Beijing, 2014, 36(Suppl 1): 230吳華杰, 陸鵬雁, 岳峰, 等. 鈣處理對中硫含量鋼中硫化物形態影響的試驗研究. 北京科技大學學報, 2014, 36(增刊 1):230 [6] Cai X F, Bao Y P, Lin L. Evolution of inclusions during calcium treatment in liquid steel and its thermodynamic analysis. Chin J Eng, 2016, 38(Suppl 1): 32蔡小鋒, 包燕平, 林路. 鈣處理過程夾雜物演變及熱力學分析. 工程科學學報, 2016, 38(增刊 1):32 [7] Wang H, Li J, Shi C B, et al. Evolution of inclusions in calcium-treated H13 die steel. Chin J Eng, 2018, 40(Suppl 1): 11王昊, 李晶, 史成斌, 等. 鈣處理H13鋼中夾雜物的轉變. 工程科學學報, 2018, 40(增刊 1):11 [8] Yang S F, Wang Q Q, Zhang L F, et al. Formation and modification of MgO·Al2O3-based inclusions in alloy steels. Metall Mater Trans B, 2012, 43(4): 731 doi: 10.1007/s11663-012-9663-1 [9] Verma N, Pistorius P C, Fruehan R J, et al. Calcium modification of spinel inclusions in aluminum-killed steel: reaction steps. Metall Mater Trans B, 2012, 43(4): 830 doi: 10.1007/s11663-012-9660-4 [10] Lind M, Holappa L. Transformation of alumina inclusions by calcium treatment. Metall Mater Trans B, 2010, 41(2): 359 doi: 10.1007/s11663-009-9337-9 [11] Yang W, Zhang L F, Wang X H, et al. Characteristics of inclusions in low carbon Al-killed steel during ladle furnace refining and calcium treatment. ISIJ Int, 2013, 53(8): 1401 doi: 10.2355/isijinternational.53.1401 [12] Ren Y, Zhang L F, Li S S. Transient evolution of inclusions during calcium modification in linepipe steels. ISIJ Int, 2014, 54(12): 2772 doi: 10.2355/isijinternational.54.2772 [13] Bai X F, Sun Y H, Chen R M, et al. Formation and thermodynamics of CaS-bearing inclusions during Ca treatment in oil casting steels. Int J Miner Metall Mater, 2019, 26(5): 573 doi: 10.1007/s12613-019-1766-0 [14] Liu Y, Zhang L F, Zhang Y, et al. Effect of sulfur in steel on transient evolution of inclusions during calcium treatment. Metall Mater Trans B, 2018, 49(2): 610 doi: 10.1007/s11663-018-1179-x [15] Yang G W, Wang X H, Huang F X, et al. Influence of calcium addition on inclusions in LCAK steel with ultralow sulfur content. Metall Mater Trans B, 2015, 46(1): 145 doi: 10.1007/s11663-014-0181-1 [16] Hu Y, Chen W Q, Han H B, et al. Influence of calcium treatment on cleanness and fatigue life of 60Si2MnA spring steel. Ironmaking Steelmaking, 2017, 44(1): 28 doi: 10.1080/03019233.2016.1153026 [17] Li Q, Wang X H, Li H B, et al. Modification of non-metallic inclusions in high-strength low-alloy steel. J Univ Sci Technol Beijing, 2012, 34(11): 1262李強, 王新華, 李海波, 等. 低合金高強鋼中非金屬夾雜物的改性. 北京科技大學學報, 2012, 34(11):1262 [18] Tabatabaei Y, Coley K S, Irons G A, et al. A kinetic model for modification of MgAl2O4 spinel inclusions during calcium treatment in the ladle furnace. Metall Mater Trans B, 2018, 49(5): 2744 doi: 10.1007/s11663-018-1354-0 [19] Tabatabaei Y, Coley K S, Irons G A, et al. Model of inclusion evolution during calcium treatment in the ladle furnace. Metall Mater Trans B, 2018, 49(4): 2022 doi: 10.1007/s11663-018-1266-z [20] Zhang L F, Liu Y, Zhang Y, et al. Transient evolution of nonmetallic inclusions during calcium treatment of molten steel. Metall Mater Trans B, 2018, 49(4): 1841 doi: 10.1007/s11663-018-1289-5 [21] Ren Y, Zhang Y, Zhang L F. A kinetic model for Ca treatment of Al-killed steels using FactSage macro processing. Ironmaking Steelmaking, 2017, 44(7): 497 doi: 10.1080/03019233.2016.1216632 [22] Zhang L F, Li F, Fang W. Thermodynamic investigation for the accurate calcium addition during calcium treatment of molten steels. Steelmaking, 2016, 32(2): 1張立峰, 李菲, 方文. 鋼液鈣處理過程中鈣加入量精準計算的熱力學研究. 煉鋼, 2016, 32(2):1 [23] Liu Y, Zhang L F. Relationship between dissolved calcium and total calcium in Al-killed steels after calcium treatment. Metall Mater Trans B, 2018, 49(4): 1624 doi: 10.1007/s11663-018-1288-6 [24] Gollapalli V, Rao M B V, Karamched P S, et al. Modification of oxide inclusions in calcium-treated Al-killed high sulphur steels. Ironmaking Steelmaking, 2019, 46(7): 663 doi: 10.1080/03019233.2018.1443382 [25] Guo, Y T, He S P, Chen G J, et al. Thermodynamics of complex sulfide inclusion formation in Ca-treated Al-killed structural steel. Metall Mater Trans B, 2016, 47(4): 2549 doi: 10.1007/s11663-016-0685-y [26] Liu J H, Bao Y P, Wang M, et al. Investigations of inclusion modification in high grade pipeline steel. J Iron Steel Res Int, 2011, 18(Suppl 2): 358 [27] Li M, Li S S, Ren Y, et al. Modification of inclusions in linepipe steels by Ca-containing ferrosilicon during ladle refining. Ironmaking Steelmaking, 2020, 47(1): 6 doi: 10.1080/03019233.2018.1521566 [28] Zheng W, Li T Y, Wang C F, et al. Melting behavior of CaAl cored wire in liquid steel and optimization of wire feeding parameters. J Univ Sci Technol Beijing, 2018, 40(Suppl 1): 168鄭萬, 李天佑, 王春鋒, 等. CaAl包芯線的熔化特征及喂線參數的優化. 工程科學學報, 2018, 40(增刊 1):168 [29] Liu Y. Fundamentals of Calcium Treatment on Non-Metallic Inclusions in Steel[Dissertation]. Beijing: University of Science and Technolgy Beijing, 2018.劉洋. 鋼液中非金屬夾雜物鈣處理基礎研究[學位論文]. 北京: 北京科技大學, 2018. [30] Zhang L F. Non-Metallic Inclusions in Steels: Industrial Practice. Beijing: Metallurgical Industry Press, 2019.張立峰. 鋼中非金屬夾雜物: 工業實踐. 北京: 冶金工業出版社, 2019 -