-
摘要: 利用氫氟酸(HF)刻蝕MAX(Ti3AlC2)相獲得一種新型二維層狀材料MXene(Ti3C2Tx),利用液相插層法擴大MXene材料層間距,然后在MXene表面分別負載納米片狀(NSV)和納米帶狀(NBV)的五氧化二釩(V2O5)。利用X射線衍射(XRD)、比表面積測試分析(BET)和高分辨場發射掃描電鏡(FESEM)等手段對復合材料進行了結構表征。結果表明:MXene層間距增加;且兩種形貌的五氧化二釩均勻的負載在MXene表面。這兩種納米復合材料的比表面積比MXene高,意味著它們可以為電化學反應提供更多的活性位點。利用多種電化學技術對V2O5,MXene和不同V2O5/MXene納米復合材料在1.0 mol·L?1 Na2SO4和1.0 mol·L?1 LiNO3電解液中進行了電化學性能測試。結果表明:當電流密度為1 A·g?1時,在1.0 mol·L?1 Na2SO4電解液中MXene,V2O5,NSV/MXene和NBV/MXene的比電容分別為8.1,15.7,96.8和88.5 F·g?1;在1.0 mol·L?1 LiNO3電解液中NSV/MXene和NBV/MXene的比電容分別為64.6,46.7,180.0和114.0 F·g?1。表明所制備的NSV/MXene納米復合材料是一種有研究和開發潛力的超級電容器電極材料。Abstract: Supercapacitors are usually used in new energy storage devices, communication technology, military, and aerospace fields due to their long lifecycle and high power density. Presently, it is imperative to find the electrode materials with low cost and excellent capacity. MXenes have received increasing attention due to their unique physical and chemical properties. They not only have superior electrical conductivity but also contain abundant surface groups (?OH, ?F or ?O); therefore, they are regarded as versatile 2D materials. MXenes can generate higher volumetric capacitance than that of graphene. However, MXene nanosheets are inclined to stack together, limiting the electrochemical properties of supercapacitors. In this work, an MXene (Ti3C2Tx) was obtained by etching an MAX (Ti3AlC2) phase using HF. To expand the interlayer spacing of Ti3C2Tx, the liquid-phase intercalation method was adopted. After the interlayer spacing was expanded, V2O5 nanosheet (NSV) and V2O5 nanobelt (NBV) were loaded on the MXene surface by a facile hydrothermal process. Their structure and morphology were characterized using different techniques, such as X-ray diffraction, Brunauer–Emmett–Teller surface area measurements, and field-emission scanning electron microscopy. The results show that the interlayer spacing of MXene is increased after liquid-phase intercalation, and NSV and NBV are uniformly loaded on the MXene surface. Moreover, the specific surface areas of the NSV/MXene and NSV/MXene nanocomposites are higher than that of the MXene; therefore, the nanocomposites can provide more active sites for electrochemical reactions. The electrochemical performances of the nanocomposites were investigated in 1.0 mol·L?1 Na2SO4 and 1.0 mol·L?1 LiNO3 aqueous solutions. The specific capacitances of V2O5, MXene, NSV/MXene, and NBV/MXene are 8.1, 15.7, 96.8, and 88.5 F·g?1 in 1.0 mol·L?1 Na2SO4, respectively. When they are tested in 1.0 mol·L?1 LiNO3, their specific capacitances are 64.6, 46.7, 180.0, and 114.0 F·g?1, respectively. Therefore, the NSV/MXene nanocomposite is a potential electrode material for supercapacitors.
-
Key words:
- MXene /
- vanadium pentoxide /
- nanocomposites /
- electrode materials /
- supercapacitors
-
圖 6 循環伏安曲線。(a)MXene和純V2O5電極材料在20 mV·s?1時;(b)NBV/MXene在1 mol·L?1 Na2SO4;(c)NSV/MXene在1 mol·L?1 Na2SO4;(d)NBV/MXene在1 mol·L?1 LiNO3;(e)NSV/MXene在1 mol·L?1 LiNO3;(f)NBV/MXene和NSV/MXene在20 mV·s?1時
Figure 6. CV curves: (a) MXene and pure V2O5 at 20 mV·s?1; (b) NBV/MXene in 1 mol·L?1 Na2SO4; (c) NSV/MXene in 1 mol·L?1 Na2SO4; (d) NBV/MXene in 1 mol·L?1 LiNO3; (e) NSV/MXene in 1 mol·L?1 LiNO3; (f) NBV/MXene and NSV/MXene at 20 mV·s?1
圖 7 不同掃速下的lgi和lgv線性擬合圖。(a)NBV/MXene在1 mol·L?1 Na2SO4;(b)NSV/MXene在1 mol·L?1 Na2SO4;(c)NBV/MXene在1 mol·L?1 LiNO3;(d)NSV/MXene在1 mol·L?1 LiNO3
Figure 7. lgi vs lgv linear fit at different scan rates: (a) NBV/MXene in 1 mol·L?1 Na2SO4; (b) NSV/MXene 1 mol·L?1 Na2SO4; (c) NBV/MXene in 1 mol·L?1 LiNO3; (d) NSV/MXene in 1 mol·L?1 LiNO3
圖 8 掃速為50 mV·s?1的不同試樣的贗電容貢獻率。(a)NBV/MXene在1 mol·L?1 Na2SO4;(b)NSV/MXene在1 mol·L?1 Na2SO4;(c)NBV/MXene在1 mol·L?1 LiNO3;(d)NSV/MXene在1 mol·L?1 LiNO3
Figure 8. Pseudocapacitance contribution rate of samples at 50 mV·s?1: (a) NBV/MXene in 1 mol·L?1 Na2SO4; (b) NSV/MXene in 1 mol·L?1 Na2SO4; (c) NBV/MXene in 1 mol·L?1 LiNO3; (d) NSV/MXene in 1 mol·L?1 LiNO3
圖 9 (a)MXene和純V2O5電極材料在1 A·g?1時分別在兩種電解液中的恒流充放電曲線對比圖;(b)NBV/MXene在1 mol·L?1 Na2SO4,(c)NSV/MXene在1 mol·L?1 Na2SO4,(d)NBV/MXene在1 mol·L?1 LiNO3和(e)NSV/MXene在1 mol·L?1 LiNO3的恒流充放電曲線;(f)NBV/MXene和NSV/MXene在1 mol·L?1 Na2SO4,NBV/MXene和NSV/MXene在1 mol·L?1 LiNO3在1 A·g?1的恒流充放電曲線對比圖;(g)不同樣品在不同電解液中不同電流密度電容量對比圖
Figure 9. (a) GCD curves of MXene and pure V2O5 at 1 A·g?1 in different electrolytes; GCD curves for NBV/MXene in 1 mol·L?1 Na2SO4 (b), NSV/MXene in 1 mol·L?1 Na2SO4 (c), NBV/MXene in 1 mol·L?1 LiNO3 (d), and NSV/MXene in 1 mol·L?1 LiNO3 (e); (f) GCD curves of the electrode materials at 1 A·g?1 in different electrolytes; (g) comparison diagram of specific capacitance for different samples at different densities in different electrolytes
-
參考文獻
[1] Li S, Niu J J, Zhao Y C, et al. High-rate aluminium yolk-shell nanoparticle anode for Li-ion battery with long cycle life and ultrahigh capacity. <italic>Nat Commun</italic>, 2015, 6: 7872 doi: 10.1038/ncomms8872 [2] Liu Q, Nayfeh O, Nayfeh M H, et al. Flexible supercapacitor sheets based on hybrid nanocomposite materials. <italic>Nano Energy</italic>, 2013, 2(1): 133 doi: 10.1016/j.nanoen.2012.08.007 [3] Yu J J, Liao B, Zhang X. Fabrication of 3D ZnO/CuO nanotrees and investigation of their photoelectrochemical properties. <italic>J Rare Met</italic>, 2018, 42(5): 449 [4] Wu B, Liao B, Liu X, Wen J K. A study on electrochemical fundamentals and kinetics of bioleaching of chalcocite. <italic>J Rare Met</italic>, 2019, 43(12): 1332 [5] Wu L, Zhong S K, Lu J J, et al. Synthesis of Cr-doped LiMnPO<sub>4</sub>/C cathode materials by sol-gel combined ball milling method and its electrochemical properties. <italic>Ionics</italic>, 2013, 19(7): 1061 doi: 10.1007/s11581-013-0919-9 [6] He B, Chen P, Xie Y, et al. 20(R)-Ginsenoside Rg3 protects SH-SY5Y cells against apoptosis induced by oxygen and glucose deprivation/reperfusion. <italic>Bioorg Med Chem Lett</italic>, 2017, 27(16): 3867 doi: 10.1016/j.bmcl.2017.06.045 [7] Chen C, Xie X Q, Anasori B, et al. MoS<sub>2</sub>-on-MXene heterostructures as highly reversible anode materials for lithium‐ion batteries. <italic>Angew Chem Int Ed</italic>, 2018, 57(7): 1846 doi: 10.1002/anie.201710616 [8] Zhang X, Zhang Z H, Zhou Z. MXene-based materials for electrochemical energy storage. <italic>J Energy Chem</italic>, 2018, 27(1): 73 doi: 10.1016/j.jechem.2017.08.004 [9] Jiang Q, Kurra N, Alhabeb M, et al. All pseudocapacitive MXene-RuO<sub>2</sub> asymmetric supercapacitors. <italic>Adv Energy Mater</italic>, 2018, 8(13): 1703043 doi: 10.1002/aenm.201703043 [10] Yang J, Lan T B, Liu J D, et al. Supercapacitor electrode of hollow spherical V<sub>2</sub>O<sub>5</sub> with a high pseudocapacitance in aqueous solution. <italic>Electrochim Acta</italic>, 2013, 105: 489 doi: 10.1016/j.electacta.2013.05.023 [11] Lukatskaya M R, Bak S M, Yu X Q, et al. Probing the mechanism of high capacitance in 2D titanium carbide using <italic>in situ</italic> X-ray absorption spectroscopy. <italic>Adv Energy Mater</italic>, 2015, 5(15): 1500589 doi: 10.1002/aenm.201500589 [12] Lv G X, Wang J, Shi Z Q, et al. Intercalation and delamination of two-dimensional MXene (Ti<sub>3</sub>C<sub>2</sub>T<sub><italic>x</italic></sub>) and application in sodium-ion batteries. <italic>Mater Lett</italic>, 2018, 219: 45 doi: 10.1016/j.matlet.2018.02.016 [13] VahidMohammadi A, Kayali E, Orangi J, et al. Techniques for MXene delamination into single-layer flakes // 2D Metal Carbides and Nitrides (MXenes). Cham: Springer, 2019: 177 [14] Feng W L, Luo H, Wang Y, et al. Ultrasonic assisted etching and delaminating of Ti<sub>3</sub>C<sub>2</sub> Mxene. <italic>Ceram Int</italic>, 2018, 44(6): 7084 doi: 10.1016/j.ceramint.2018.01.147 [15] Dong Y C, Chertopalov S, Maleski K, et al. Saturable absorption in 2D Ti<sub>3</sub>C<sub>2</sub> MXene thin films for passive photonic diodes. <italic>Adv Mater</italic>, 2018, 30(10): 1705714 doi: 10.1002/adma.201705714 [16] Wang H Y, Shao X Z, Wang L, et al. Effect of Ce doping into V<sub>2</sub>O<sub>5</sub>-WO<sub>3</sub>/TiO<sub>2</sub> catalysts on the selective catalytic reduction of NO<sub><italic>x</italic></sub> by NH<sub>3</sub>. <italic>J Rare Met</italic>, 2017, 42(1): 53 [17] Wang D S, Li F, Lian R Q, et al. A general atomic surface modification strategy for improving anchoring and electrocatalysis behavior of Ti<sub>3</sub>C<sub>2</sub>T<sub>2</sub> MXene in lithium–sulfur batteries. <italic>ACS Nano</italic>, 2019, 13(10): 11078 doi: 10.1021/acsnano.9b03412 [18] Zhu Y, Rajoua K, Le Vot S, et al. Modifications of MXene layers for supercapacitors. <italic>Nano Energy</italic>, 2020, 73: 104734 [19] Zhang Y, Liu K Y, Zhang W, et al. Charge-discharge process of a weak-crystalline manganese dioxide supercapacitor. <italic>J Univ Sci Technol Beijing</italic>, 2008, 30(7): 775 doi: 10.3321/j.issn:1001-053X.2008.07.015張瑩, 劉開宇, 張偉, 等. 弱結晶二氧化錳超級電容器充放電分析. 北京科技大學學報, 2008, 30(7):775 doi: 10.3321/j.issn:1001-053X.2008.07.015 [20] Yu P, Cao G J, Yi S, et al. Binder-free 2D titanium carbide (MXene)/carbon nanotube composites for high-performance lithium-ion capacitors. <italic>Nanoscale</italic>, 2018, 10(13): 5906 doi: 10.1039/C8NR00380G [21] Liu C, Wu J C, Zhou H T, et al. Great enhancement of carbon energy storage through narrow pores and hydrogen-containing functional groups for aqueous Zn-ion hybrid supercapacitor. <italic>Molecules</italic>, 2019, 24(14): 2589 doi: 10.3390/molecules24142589 [22] Levitt A S, Alhabeb M, Hatter C B, et al. Electrospun MXene/carbon nanofibers as supercapacitor electrodes. <italic>J Mater Chem A</italic>, 2019, 7(1): 269 doi: 10.1039/C8TA09810G [23] Li J M, Levitt A, Kurra N, et al. MXene-conducting polymer electrochromic microsupercapacitors. <italic>Energy Storage Mater</italic>, 2019, 20: 455 doi: 10.1016/j.ensm.2019.04.028 [24] Bao L H, Zang J F, Li X D. Flexible Zn<sub>2</sub>SnO<sub>4</sub>/MnO<sub>2</sub> core/shell nanocable-carbon microfiber hybrid composites for high-performance supercapacitor electrodes. <italic>Nano Lett</italic>, 2011, 11(3): 1215 doi: 10.1021/nl104205s [25] Chang J K, Huang C H, Lee M T, et al. Physicochemical factors that affect the pseudocapacitance and cyclic stability of Mn oxide electrodes. <italic>Electrochim Acta</italic>, 2009, 54(12): 3278 doi: 10.1016/j.electacta.2008.12.042 [26] Shen L, Zhou X Y, Zhang X L, et al. Carbon-intercalated Ti<sub>3</sub>C<sub>2</sub>T<sub><italic>x</italic></sub> MXene for high-performance electrochemical energy storage. <italic>J Mater Chem A</italic>, 2018, 6(46): 23513 doi: 10.1039/C8TA09600G [27] Yoon Y, Lee M, Kim S K, et al. A strategy for synthesis of carbon nitride induced chemically doped 2D MXene for high-performance supercapacitor electrodes. <italic>Adv Energy Mater</italic>, 2018, 8(15): 1703173 doi: 10.1002/aenm.201703173 [28] Mojtabavi M, VahidMohammadi A, Liang W T, et al. Single-molecule sensing using nanopores in two-dimensional transition metal carbide (MXene) membranes. <italic>ACS Nano</italic>, 2019, 13(3): 3042 doi: 10.1021/acsnano.8b08017 [29] Boota M, Gogotsi Y. MXene-conducting polymer asymmetric pseudocapacitors. <italic>Adv Energy Mater</italic>, 2019, 9(7): 1802917 doi: 10.1002/aenm.201802917 -