-
摘要: 為保持國家能源安全,我國油氣開發領域在常規油氣藏維持產量進行剩余油挖潛的基礎上,積極推進非常規油氣資源的勘探與開發.致密油藏地質勘探資源儲量高,但儲層條件差,油水關系復雜制約著其大規模高效開發.雖然我國已經在低滲-超低滲油藏的開發中積累了大量的經驗并取得了豐碩的成果,但致密油藏無論從開發規模還是理論研究都處于起步階段,急需借鑒和開展適用于致密油藏的開發方法與滲流機理研究.本文首先概述了致密油藏的資源分布、地質特點與開發現狀.在此基礎上介紹了致密油藏開發方法并抽提了4類基本科學問題,圍繞基本科學問題系統論述了相應的流動規律以及數學模型理論研究進展,并針對各問題提出了未來發展趨勢,為促進我國致密油開發提供一定的指導意義.Abstract: The exploration and development of unconventional oil and gas become the hotspot in worldwide petroleum industry at present and in the future time. The unconventional resources are the succession and growth of conventional oil and gas production. Mineral resource investigations reveal that tight oil reservoirs in China contain highly geological and recoverable reserves, effective development of which is of great significance but restricted by poor reservoir physical properties and complex oil-water distribution. After decades of exploration and development, low and ultra-low permeability reservoirs have been successfully developed. However, development patterns and flow mechanisms suitable for tight oil are still insufficient, and the field application is far from mature yet. This study first summarized the resource distribution, geological characteristics, exploration, and development status of tight oil reservoirs in China. Then, development patterns and corresponding fundamental scientific issues of tight oil reservoirs were discussed. Corresponding nonlinear flow laws, mathematical flow models of multi-field and multiscale related to different exploitation patterns and scientific issues were summarized. Related study results of the authors were also introduced. Finally, a future development trend was proposed for each aspect. We hope that this study will provide some guiding to promote the tight oil exploration in China.
-
Key words:
- tight oil /
- development pattern /
- nonlinear /
- multi-filed coupling /
- multiscale flow
-
表 1 中國主要盆地致密油資源
Table 1. Tight oil resources in the major basins of China
含油盆地 含油層系 儲層類型 有利面積/(104 km2) 滲透率/mD 厚度/m 預測資源量/(108 t) 準噶爾盆地 二疊系 灰質白云巖 6~8 <1 80~200 29 三塘湖盆地 二疊系 白云巖、灰巖、黑色泥巖 0.5~1 0.1~1 10~100 5.6 鄂爾多斯盆地 三疊系 粉細砂巖 8~10 0.01~1 20~80 19.9 四川盆地 侏羅系 粉細砂巖、介殼灰巖、泥質灰巖 7~11 0.0001~1 10~60 10.7 吐哈盆地 侏羅系 粉細砂巖 0.7~1 < 1 30~200 1~1.5 松遼盆地 白堊系 致密砂巖 8~9 0.6~1 5~30 19~21.3 酒西盆地 白堊系 粉砂巖、碳酸鹽巖 0.3~0.5 < 0.1 100~300 1.8~2.3 渤海灣盆地 古近系 白云巖、致密砂巖 9~11 0.2~1 100~200 3.8~4.5 柴達木盆地 新近系 泥灰巖、藻灰巖、粉砂巖 2~3 < 1 100~150 4~5 -
參考文獻
[1] Tong X G, Zhang G Y, Wang Z M, et al. Distribution and potential of global oil and gas resources. Petrol Explor Dev, 2018, 45(4): 727 https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201804020.htm童曉光, 張光亞, 王兆明, 等. 全球油氣資源潛力與分布. 石油勘探與開發, 2018, 45(4): 727 https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201804020.htm [2] BP Group. Statistical Review of World Energy 2018[R/OL]. https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy/downloads.html [3] Zhang J F, Bi H B, Xu H, et al. New progress and reference significance of overseas tight oil exploration and development. Acta Petrol Sin, 2015, 36(2): 127 https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201502001.htm張君峰, 畢海濱, 許浩, 等. 國外致密油勘探開發新進展及借鑒意義. 石油學報, 2015, 36(2): 127 https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201502001.htm [4] Zou C N, Zhu R K, Bai B, et al. Significance, geologic characteristics, resource potential and future challenges of tight oil and shale oil. Bull Mineral Petrol Geochem, 2015, 34(1): 3 https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201501002.htm鄒才能, 朱如凱, 白斌, 等. 致密油與頁巖油內涵、特征、潛力及挑戰. 礦物巖石地球化學通報, 2015, 34(1): 3 https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201501002.htm [5] Du J H, Liu H, Ma D S, et al. Discussion on effective development techniques for continental tight oil in China. Petrol Explor Dev, 2014, 41(2): 198 https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201402010.htm杜金虎, 劉合, 馬德勝, 等. 試論中國陸相致密油有效開發技術. 石油勘探與開發, 2014, 41(2): 198 https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201402010.htm [6] Hu S Y, Zhu R K, Wu S T, et al. The exploration and development of continental tight oil in China under the background of low oil price. Petrol Explor Dev, 2018, 45(4): 1胡素云, 朱如凱, 吳松濤, 等. 低油價背景下中國陸相致密油的效益勘探開發. 石油勘探與開發, 2018, 45(4): 1 [7] Zhu X M, Pan R, Zhu S F, et al. Research progress and core issues in tight reservoir exploration. Earth Sci Front, 2018, 25(2): 141 https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201802019.htm朱筱敏, 潘榮, 朱世發, 等. 致密儲層研究進展和熱點問題分析. 地學前緣, 2018, 25(2): 141 https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201802019.htm [8] Jia C Z, Zou C N, Li J Z, et al. Assessment criteria, main types, basic features and resource prospects of the tight oil in China. Acta Petrol Sin, 2012, 33(3): 343 https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201203000.htm賈承造, 鄒才能, 李建忠, 等. 中國致密油評價標準、主要類型、基本特征及資源前景. 石油學報, 2012, 33(3): 343 https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201203000.htm [9] Qu J X, Ding X J, Zha M, et al. Geochemical characterization of Lucaogou formation and its correlation of tight oil accumulation in Jimsar Sag of Junggar Basin, Northwestern China. J Petrol Explor Prod Technol, 2017, 7(3): 699 doi: 10.1007/s13202-017-0335-1 [10] Xu Z J, Liu L F, Wang T G, et al. Characteristics and controlling factors of lacustrine tight oil reservoirs of the Triassic Yanchang Formation Chang 7 in the Ordos Basin, China. Marine Petrol Geol, 2017, 82: 265 doi: 10.1016/j.marpetgeo.2017.02.012 [11] Huang D, Yang G, Wei T Q, et al. Recognition of high yield and stable yield factors of Daanzhai tight oil, Guihua oilfield. J Southwest Petrol Univ Sci Technol Ed, 2015, 37(5): 23 https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY201505004.htm黃東, 楊光, 韋騰強, 等. 川中桂花油田大安寨段致密油高產穩產再認識. 西南石油大學學報: 自然科學版), 2015, 37(5): 23 https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY201505004.htm [12] Ren Y, Cao H, Yao F C, et al. Brittleness and fracability prediction for tight oil reservoir in Jimsar Sag, Junggar Basin. Oil Geophys Prosp, 2018, 53(3): 511 https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201803010.htm任巖, 曹宏, 姚逢昌, 等. 吉木薩爾致密油儲層脆性及可壓裂性預測. 石油地球物理勘探, 2018, 53(3): 511 https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201803010.htm [13] Fan J M, Yang Z Q, Li W B, et al. Assessment of fracturing treatment of horizontal wells using SRV technique for Chang-7 tight oil reservoir in Ordos Basin. J China Univ Petrol Ed Nat Sci, 2015, 39(4): 103 https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201504014.htm樊建明, 楊子清, 李衛兵, 等. 鄂爾多斯盆地長7致密油水平井體積壓裂開發效果評價及認識. 中國石油大學學報: 自然科學版, 2015, 39(4): 103 https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201504014.htm [14] Guo J C, Tao L, Zeng F H. Optimization of refracturing timing for horizontal wells in tight oil reservoirs: a case study of Cretaceous Qingshankou Formation, Songliao Basin, NE China. Petrol Explor Dev, 2019, 46(1): 146 https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201901015.htm郭建春, 陶亮, 曾凡輝. 致密油儲集層水平井重復壓裂時機優化——以松遼盆地白堊系青山口組為例. 石油勘探與開發, 2019, 46(1): 146 https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201901015.htm [15] Yassin M R, Habibi A, Zolfaghari A, et al. An experimental study of nonequilibrium carbon dioxide/oil interactions. SPE J, 2018, 23(5): 1768 doi: 10.2118/187093-PA [16] Dong P F, Puerto M, Jian G Q, et al. Low-IFT foaming system for enhanced oil recovery in highly heterogeneous/fractured oil-wet carbonate reservoirs. SPE J, 2018, 23(6): 2243 doi: 10.2118/184569-PA [17] Huang D Z, Xiang D, Wang C S. A feasibility analysis of waterflood swallowing-spitting oil production. Drill Prod Technol, 2003, 26(4): 17 https://www.cnki.com.cn/Article/CJFDTOTAL-ZCGY200304007.htm黃大志, 向丹, 王成善. 油田注水吞吐采油的可行性分析. 鉆采工藝, 2003, 26(4): 17 https://www.cnki.com.cn/Article/CJFDTOTAL-ZCGY200304007.htm [18] Tao D H, Zhan X H, Gao J W, et al. Study and practice of cyclic water injection in Mazhong tight oil reservoir in the Santanghu Basin. Oil Drill Prod Technol, 2018, 40(5): 614 https://www.cnki.com.cn/Article/CJFDTOTAL-SYZC201805013.htm陶登海, 詹雪函, 高敬文, 等. 三塘湖盆地馬中致密油藏注水吞吐探索與實踐. 石油鉆采工藝, 2018, 40(5): 614 https://www.cnki.com.cn/Article/CJFDTOTAL-SYZC201805013.htm [19] Wang X Z, Dang H L, Gao T. Method of moderate water injection and its application in ultra-low permeability oil reservoirs of Yanchang Oilfield, NW China. Petrol Explor Dev, 2018, 45(6): 1026 https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201806011.htm王香增, 黨海龍, 高濤. 延長油田特低滲油藏適度溫和注水方法與應用. 石油勘探與開發, 2018, 45(6): 1026 https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201806011.htm [20] Zhao L J. Applications of oil producing technology of huff and puff infection of microbe in low permeable oilfields. Petrol Drill Tech, 2005, 33(3): 61 doi: 10.3969/j.issn.1001-0890.2005.03.020趙麗娟. 微生物采油技術在低滲透油田的應用. 石油鉆探技術, 2005, 33(3): 61 doi: 10.3969/j.issn.1001-0890.2005.03.020 [21] Kumar V, Paraschivoiu M, Nigam K D P. Single-phase fluid flow and mixing in microchannels. Chem Eng Sci, 2011, 66(7): 1329 doi: 10.1016/j.ces.2010.08.016 [22] Kandlikar S G. Fundamental issues related to flow boiling in minichannels and microchannels. Exp Therm Fluid Sci, 2002, 26(2-4): 389 doi: 10.1016/S0894-1777(02)00150-4 [23] Li Y, Lei Q, Liu X G, et al. Characteristics of micro scale nonlinear filtration. Petrol Explor Dev, 2011, 38(3): 336 https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201103018.htm李洋, 雷群, 劉先貴, 等. 微尺度下的非線性滲流特征. 石油勘探與開發, 2011, 38(3): 336 https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201103018.htm [24] Li Z H, Zhou X B, Zhu S N. Flow characteristics of non-polar organic liquids with small molecules in a microchannel. Acta Mech Sin, 2002, 34(3): 432 doi: 10.3321/j.issn:0459-1879.2002.03.016李戰華, 周興貝, 朱善農. 非極性小分子有機液體在微管道中的流量特性. 力學學報, 2002, 34(3): 432 doi: 10.3321/j.issn:0459-1879.2002.03.016 [25] Zhu W Y, Tian Y A, Yu M X, et al. Mechanism of microscopic fluid flow in microtubes. Sci Technol Rev, 2014, 32(27): 23 doi: 10.3981/j.issn.1000-7857.2014.27.003朱維耀, 田英愛, 于明旭, 等. 微圓管中流體的微觀流動機制. 科技導報, 2014, 32(27): 23 doi: 10.3981/j.issn.1000-7857.2014.27.003 [26] Cao M J. Experiment Research of Magnetic Fluid Flow Characteristics in Microscale [Dissertation]. Beijing: University of Science and Technology Beijing, 2016曹孟菁. 磁性流體微尺度流動規律實驗研究[學位論文]. 北京: 北京科技大學, 2016 [27] Tian X F, Cheng L S, Cao R Y, et al. Characteristics of boundary layer in micro and nano throats of tight sandstone oil reservoirs. Chin J Comput Phys, 2016, 33(6): 717 doi: 10.3969/j.issn.1001-246X.2016.06.012田虓豐, 程林松, 曹仁義, 等. 致密油藏微納米喉道中的邊界層特征. 計算物理, 2016, 33(6): 717 doi: 10.3969/j.issn.1001-246X.2016.06.012 [28] Song F Q, Yu L. The boundary negative slippage of liquid flowing in hydrophilic micro-tubes. Chin J Hydrodyn, 2013, 28(2): 128 https://www.cnki.com.cn/Article/CJFDTOTAL-SDLJ201302001.htm宋付權, 于玲. 液體在潤濕性微管中流動的邊界負滑移特征. 水動力學研究與進展(A輯), 2013, 28(2): 128 https://www.cnki.com.cn/Article/CJFDTOTAL-SDLJ201302001.htm [29] Fan J M, Li W B, Han H P, et al. Study on variation of the starting pressure gradient of Chang 7 tight oil in Erdos Basin. Sci Technol Eng, 2014, 14(28): 27 doi: 10.3969/j.issn.1671-1815.2014.28.006樊建明, 李衛兵, 韓會平, 等. 鄂爾多斯盆地長7致密油啟動壓力梯度變化規律研究. 科學技術與工程, 2014, 14(28): 27 doi: 10.3969/j.issn.1671-1815.2014.28.006 [30] Zhao Y J, Wang X W, Ling H C. Experimental study on the porous flow law of tight oil reservoir. Sci Technol Rev, 2014, 32(28-29): 59 https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB2014Z2022.htm趙玉集, 王學武, 凌浩川. 致密油藏流體滲流規律實驗研究. 科技導報, 2014, 32(28-29): 59 https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB2014Z2022.htm [31] Chen M Q, Ren L, Li M, et al. Study on seepage law of Chang 7 ultra-low permeability reservoir in Ordos Basin. Fault-Block Oil Gas Field, 2013, 20(2): 191 https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201302016.htm陳明強, 任龍, 李明, 等. 鄂爾多斯盆地長7超低滲油藏滲流規律研究. 斷塊油氣田, 2013, 20(2): 191 https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201302016.htm [32] Hao F, Cheng L S, Li C L, et al. Study on threshold pressure gradient in ultra-low permeability reservoir. J Southeast Petrol Inst, 2006, 28(6): 29 doi: 10.3863/j.issn.1674-5086.2006.06.008郝斐, 程林松, 李春蘭, 等. 特低滲透油藏啟動壓力梯度研究. 西南石油學院學報, 2006, 28(6): 29 doi: 10.3863/j.issn.1674-5086.2006.06.008 [33] Zhu W Y, Tian W, Zhu H Y, et al. Study on experiment of threshold pressure gradient for tight sandstone. Sci Technol Eng, 2015, 15(3): 79 doi: 10.3969/j.issn.1671-1815.2015.03.015朱維耀, 田巍, 朱華銀, 等. 致密巖心啟動壓力梯度實驗研究. 科學技術與工程, 2015, 15(3): 79 doi: 10.3969/j.issn.1671-1815.2015.03.015 [34] Tian W, Zhu W Y, Zhu H Y, et al. Optimization of confining pressure modes during starting pressure test in tight sandstone. Spec Oil Gas Reserv, 2014, 21(2): 107 doi: 10.3969/j.issn.1006-6535.2014.02.024田巍, 朱維耀, 朱華銀, 等. 致密砂巖啟動壓力測試中圍壓模式的優選. 特種油氣藏, 2014, 21(2): 107 doi: 10.3969/j.issn.1006-6535.2014.02.024 [35] Tian W, Zhu W Y, Zhu H Y, et al. Influencing factors of threshold pressure gradient value for tight sandstone. Fault-Block Oil Gas Field, 2014, 21(5): 611 https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201405016.htm田巍, 朱維耀, 朱華銀, 等. 致密砂巖啟動壓力梯度數值的影響因素. 斷塊油氣田, 2014, 21(5): 611 https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201405016.htm [36] Wang Y Z, Zhang R, Song F Q. Stress sensitivity evaluation of tight sandstone reservoir eliminate the influence of gas slippage. Sci Technol Eng, 2017, 17(17): 221 doi: 10.3969/j.issn.1671-1815.2017.17.032王永政, 張嶸, 宋付權. 消除滑脫效應的致密砂巖儲層應力敏感評價. 科學技術與工程, 2017, 17(17): 221 doi: 10.3969/j.issn.1671-1815.2017.17.032 [37] Fu L Q. The effect of fractures on stress sensitivity and seepage characteristics in tight sandstone reservoirs. J Yangtze Univ Nat Sci Ed, 2016, 13(20): 14 doi: 10.3969/j.issn.1673-1409(s).2016.20.003付蘭清. 裂縫對致密砂巖儲層應力敏感性及滲流特征影響研究. 長江大學學報: 自科版, 2016, 13(20): 14 doi: 10.3969/j.issn.1673-1409(s).2016.20.003 [38] Dou J J, Xiu N L, Yan Y Z, et al. Research on stress sensitivity evaluation experiments of tight sandstone reservoir based on stress sensitivity constant. J Chongqing Univ Sci Technol (Nat Sci Ed), 2015, 17(4): 10 doi: 10.3969/j.issn.1673-1980.2015.04.003竇晶晶, 修乃嶺, 嚴玉忠, 等. 基于應力敏感常數的致密砂巖儲層應力敏感性評價研究. 重慶科技學院學報(自然科學版), 2015, 17(4): 10 doi: 10.3969/j.issn.1673-1980.2015.04.003 [39] Ding J C, Yang S L, Nie X R, et al. Stress sensitivity of tight gas reservoir and its influence on productivity of gas well. J Xi'an Shiyou Univ Nat Sci Ed, 2014, 29(3): 63 doi: 10.3969/j.issn.1673-064X.2014.03.011丁景辰, 楊勝來, 聶向榮, 等. 致密氣藏的應力敏感性及其對氣井單井產能的影響. 西安石油大學學報: 自然科學版, 2014, 29(3): 63 doi: 10.3969/j.issn.1673-064X.2014.03.011 [40] National Energy Administration, People's Republic of China. SY/T5358-2010Formation Damage Evaluation by Flow Test. Beijing: Petroleum Industry Press, 2010國家能源局. SY/T5358-2010儲層敏感性流動實驗評價方法. 北京: 石油工業出版社, 2010 [41] Xu X L. Stress sensitivity of low permeability reservoir containing micro fracture and its influence on productivity. Spec Oil Gas Reserv, 2015, 22(1): 127 doi: 10.3969/j.issn.1006-6535.2015.01.030徐新麗. 含微裂縫低滲儲層應力敏感性及其對產能影響. 特種油氣藏, 2015, 22(1): 127 doi: 10.3969/j.issn.1006-6535.2015.01.030 [42] Yang X, Feng S B, Wang J, et al. Stress sensitivity and its influence factors of tight oil reservoir in Chang 7 Member, Ordos Basin. China Petrol Explor, 2017, 22(5): 64 doi: 10.3969/j.issn.1672-7703.2017.05.007楊孝, 馮勝斌, 王炯, 等. 鄂爾多斯盆地延長組長7段致密油儲層應力敏感性及影響因素. 中國石油勘探, 2017, 22(5): 64 doi: 10.3969/j.issn.1672-7703.2017.05.007 [43] Yu J H, Shang X C, Wu P F. Experimental study and theoretical analysis on shale strength. Sci Sin Tech, 2016, 46(2): 135 https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201602004.htm于俊紅, 尚新春, 吳沛飛. 頁巖圓盤壓裂的理論分析與試驗研究. 中國科學: 技術科學, 2016, 46(2): 135 https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201602004.htm [44] Dong H E, Zhang H J, Yao S L, et al. Measurement and evaluation of the stress sensitivity in tight reservoirs. Petrol Explor Dev, 2016, 43(6): 1022 https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201606023.htm竇宏恩, 張虎俊, 姚尚林, 等. 致密儲集層巖石應力敏感性測試與評價方法. 石油勘探與開發, 2016, 43(6): 1022 https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201606023.htm [45] Xiao W L, Li T, Li M, et al. Evaluation of the stress sensitivity in tight reservoirs. Petrol Explor Dev, 2016, 43(1): 107 https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201601015.htm肖文聯, 李滔, 李閩, 等. 致密儲集層應力敏感性評價. 石油探勘與開發, 2016, 43(1): 107 https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201601015.htm [46] Huan G R. A discussion of the mechanism of the displacement of oil by water in a medium with double porosity. Petrol Explor Dev, 1982(1): 48 https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK198201005.htm桓冠仁. 論雙重介質兩相驅替機理. 石油勘探與開發, 1982(1): 48 https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK198201005.htm [47] Yin D. Numerical simulation method for single well water cone of double porosity medium. Petrol Explor Dev, 1981(1): 68 https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK198101006.htm尹定. 雙重孔隙介質單井水錐數值模擬方法. 石油勘探與開發, 1981(1): 68 https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK198101006.htm [48] Zhu W Y, Ju Y, Zhao M, et al. Spontaneous imbibition mechanism of flow through porous media and water flooding in low-permeability fractured sandstone reservoir. Acta Petrol Sin, 2002, 33(6): 56 https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200206015.htm朱維耀, 鞠巖, 趙明, 等. 低滲透裂縫性砂巖油藏多孔介質滲吸機理研究. 石油學報, 2002, 33(6): 56 https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200206015.htm [49] Wang J L, Liu Y Z, Chen M Q, et al. Experimental study on dynamic imbibition mechanism of low permeability reservoirs. Petrol Explor Dev, 2009, 36(1): 86 doi: 10.3321/j.issn:1000-0747.2009.01.011王家祿, 劉玉章, 陳茂謙, 等. 低滲透油藏裂縫動態滲吸機理實驗研究. 石油勘探與開發, 2009, 36(1): 86 doi: 10.3321/j.issn:1000-0747.2009.01.011 [50] DuPrey L. Gravity and capillary effects during imbibition. SPE J, 1978, 18(6): 927 [51] Li K W, Horne R N. Characterization of spontaneous water imbibition into gas-saturated rocks. SPE J, 2001, 6(4): 375 doi: 10.2118/74703-PA [52] Qu X F, Lei Q H, Gao W B, et al. Experimental study on imbibition of Chang7 tight oil cores in Erdos Basin. J China Univ Petroleum Ed Nat Sci, 2018, 42(2): 102 doi: 10.3969/j.issn.1673-5005.2018.02.012屈雪峰, 雷啟鴻, 高武斌, 等. 鄂爾多斯盆地長7致密油儲層巖心滲吸試驗. 中國石油大學學報: 自然科學版, 2018, 42(2): 102 doi: 10.3969/j.issn.1673-5005.2018.02.012 [53] Gu X Y, Pu C S, Huang H, et al. Micro-influencing mechanism of permeability on spontaneous imbibition recovery for tight sandstone reservoirs. Petrol Explor Dev, 2017, 44(6): 948 https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201706013.htm谷瀟雨, 蒲春生, 黃海, 等. 滲透率對致密砂巖儲集層滲吸采油的微觀影響機制. 石油勘探與開發, 2017, 44(6): 948 https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201706013.htm [54] Wang X Y, Yang Z M, Liu X W, et al. Physical simulation experiment investigation on large scale model using countercurrent imbibition in tight oil reservoirs. Sci Technol Eng, 2018, 18(8): 43 doi: 10.3969/j.issn.1671-1815.2018.08.007王向陽, 楊正明, 劉學偉, 等. 致密油藏大模型逆向滲吸的物理模擬實驗研究. 科學技術與工程, 2018, 18(8): 43 doi: 10.3969/j.issn.1671-1815.2018.08.007 [55] Shen A Q, Liu Y K, Qiu X H, et al. Improvement of spontaneous imbibition oil recovery in tight oil reservoir by surfactants. Oilfield Chem, 2016, 33(4): 696 https://www.cnki.com.cn/Article/CJFDTOTAL-YJHX201604025.htm沈安琪, 劉義坤, 邱曉惠, 等. 表面活性劑提高致密油藏滲吸采收率研究. 油田化學, 2016, 33(4): 696 https://www.cnki.com.cn/Article/CJFDTOTAL-YJHX201604025.htm [56] Su Y B, Lin G Y, Han Y. Influence of surfactant on spontaneous imbibition in tight sandstone reservoir and its application. Fault-Block Oil Gas Field, 2017, 24(5): 691 https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201705023.htm蘇煜彬, 林冠宇, 韓悅. 表面活性劑對致密砂巖儲層自發滲吸驅油的影響. 斷塊油氣田, 2017, 24(5): 691 https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201705023.htm [57] Zhang X W, Guo H K, Li H B. Experimental study on imbibition oil displacement of tight oil reservoir using NMR technology. Bull Sci Technol, 2018, 34(8): 35 https://www.cnki.com.cn/Article/CJFDTOTAL-KJTB201808006.htm張新旺, 郭和坤, 李海波. 基于核磁共振致密油儲層滲吸驅油實驗研究. 科技通報, 2018, 34(8): 35 https://www.cnki.com.cn/Article/CJFDTOTAL-KJTB201808006.htm [58] Zhou W F, Wang X, Lu X G, et al. Effects of the dynamic imbibition recovery and its influencing factors for the tight oil reservoirs. Petrol Geol Oilfield Dev Daqing, 2017, 36(3): 148 doi: 10.3969/J.ISSN.1000-3754.2017.03.027周萬富, 王鑫, 盧祥國, 等. 致密油儲層動態滲吸采油效果及其影響因素. 大慶石油地質與開發, 2017, 36(3): 148 doi: 10.3969/J.ISSN.1000-3754.2017.03.027 [59] Wang Q G, Wang T T, Chen Y, et al. Effect of static imbibition recovery and its influencing factors in Fuyu reservoir of Daqing oilfield. Oilfield Chem, 2018, 35(2): 308 https://www.cnki.com.cn/Article/CJFDTOTAL-YJHX201802022.htm王慶國, 王婷婷, 陳陽, 等. 大慶扶余油層靜態滲吸采油效果及其影響因素. 油田化學, 2018, 35(2): 308 https://www.cnki.com.cn/Article/CJFDTOTAL-YJHX201802022.htm [60] Wu Z B, Zeng Q, Li J, et al. New effective energy-supplement development method of waterflood huff and puff for the oil reservoir with stimulated reservoir volume fracturing. Petrol Geol Recov Efficiency, 2017, 24(5): 78 doi: 10.3969/j.issn.1009-9603.2017.05.012吳忠寶, 曾倩, 李錦, 等. 體積改造油藏注水吞吐有效補充地層能量開發的新方式. 油氣地質與采收率, 2017, 24(5): 78 doi: 10.3969/j.issn.1009-9603.2017.05.012 [61] Su Y L, Han X H, Wang W D, et al. Production capacity prediction model for multi-stage fractured horizontal well coupled with imbibition in tight oil reservoir. J Shenzhen Univ Sci Eng, 2018, 35(4): 345 https://www.cnki.com.cn/Article/CJFDTOTAL-SZDL201804004.htm蘇玉亮, 韓秀虹, 王文東, 等. 致密油體積壓裂耦合滲吸產能預測模型. 深圳大學學報: 理工版, 2018, 35(4): 345 https://www.cnki.com.cn/Article/CJFDTOTAL-SZDL201804004.htm [62] Wei Y, Ran Q Q, Tong M, et al. A full cycle productivity prediction model of fractured horizontal well in tight oil reservoirs. J Southwest Petrol Univ Sci Technol Ed, 2016, 38(1): 99 https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY201601013.htm魏漪, 冉啟全, 童敏, 等. 致密油壓裂水平井全周期產能預測模型. 西南石油大學學報: 自然科學版, 2016, 38(1): 99 https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY201601013.htm [63] Hao M Q, Wang X D, Hu Y L. Productivity calculation of multi-fractured horizontal well in ultra-low permeability pressure-sensitive reservoirs. J China Univ Petrol Ed Nat Sci, 2011, 35(6): 99 doi: 10.3969/j.issn.1673-5005.2011.06.016郝明強, 王曉冬, 胡永樂. 壓敏性特低滲透油藏壓裂水平井產能計算. 中國石油大學學報: 自然科學版, 2011, 35(6): 99 doi: 10.3969/j.issn.1673-5005.2011.06.016 [64] Yao J, Yin X X, Fan D Y, et al. Trilinear-flow well test model of fractured horizontal well in low permeability reservoir. Well Test, 2011, 20(5): 1 doi: 10.3969/j.issn.1004-4388.2011.05.001姚軍, 殷修杏, 樊冬艷, 等. 低滲透油藏的壓裂水平井三線性流試井模型. 油氣井測試, 2011, 20(5): 1 doi: 10.3969/j.issn.1004-4388.2011.05.001 [65] Wang Z P, Zhu W Y, Yue M, et al. A method to predict the production of fractured horizontal wells in low/ultra- low permeability reservoirs. J Univ Sci Technol Beijing, 2012, 34(7): 750 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201207004.htm王志平, 朱維耀, 岳明, 等. 低、特低滲透油藏壓裂水平井產能計算方法. 北京科技大學學報, 2012, 34(7): 750 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201207004.htm [66] Zhu W Y, Yue M, Gao Y, et al. Nonlinear flow model and productivity of stimulated reservoir volume in tight oil reservoirs. J China Univ Min Technol, 2014, 43(2): 248 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201402011.htm朱維耀, 岳明, 高英, 等. 致密油層體積壓裂非線性滲流模型及產能分析. 中國礦業大學學報, 2014, 43(2): 248 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201402011.htm [67] Song H Q, Liu Q P, Yang D W, et al. Productivity equation of fractured horizontal well in a water-bearing tight gas reservoir with low-velocity non-Darcy flow. J Nat Gas Sci Eng, 2014, 18: 467 doi: 10.1016/j.jngse.2014.03.022 [68] Wang X X, Hou J G, Liu Y M, et al. Overall PSD and fractal characteristics of tight oil reservoirs: a case study of Lucaogou formation in Junggar Basin, China. Fractals, 2019, 27(1): 1940005 doi: 10.1142/S0218348X1940005X [69] Wang X Z, Wan Y P. Quantitative characterization of fracture in reservoir and its geological significance. Geol Bull China, 2008, 27(11): 1939 doi: 10.3969/j.issn.1671-2552.2008.11.025王香增, 萬永平. 油氣儲層裂縫定量描述及其地質意義. 地質通報, 2008, 27(11): 1939 doi: 10.3969/j.issn.1671-2552.2008.11.025 [70] Wang B H, Wu S H, Han D K, et al. Block compressed storage and computation in large-scale reservoir simulation. Petrol Explor Dev, 2013, 40(4): 462 https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201304010.htm王寶華, 吳淑紅, 韓大匡, 等. 大規模油藏數值模擬的塊壓縮存儲及求解. 石油勘探與開發, 2013, 40(4): 462 https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201304010.htm [71] Ye J G, Wu X H, Zhu Y X, et al. Study on computer assisted history-matching method in corner point grids. Acta Petrol Sin, 2007, 28(2): 83 https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200702014.htm葉繼根, 吳向紅, 朱怡翔, 等. 大規模角點網格計算機輔助油藏模擬歷史擬合方法研究. 石油學報, 2007, 28(2): 83 https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200702014.htm -