<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

鈣鈦礦太陽能電池穩定性研究進展

朱彧 杜晨 王碩 馬瑞新 王成彥

朱彧, 杜晨, 王碩, 馬瑞新, 王成彥. 鈣鈦礦太陽能電池穩定性研究進展[J]. 工程科學學報, 2020, 42(1): 16-25. doi: 10.13374/j.issn2095-9389.2019.06.24.006
引用本文: 朱彧, 杜晨, 王碩, 馬瑞新, 王成彥. 鈣鈦礦太陽能電池穩定性研究進展[J]. 工程科學學報, 2020, 42(1): 16-25. doi: 10.13374/j.issn2095-9389.2019.06.24.006
ZHU Yu, DU Chen, WANG Shuo, MA Rui-xin, WANG Cheng-yan. Research progress on the stability of perovskite solar cells[J]. Chinese Journal of Engineering, 2020, 42(1): 16-25. doi: 10.13374/j.issn2095-9389.2019.06.24.006
Citation: ZHU Yu, DU Chen, WANG Shuo, MA Rui-xin, WANG Cheng-yan. Research progress on the stability of perovskite solar cells[J]. Chinese Journal of Engineering, 2020, 42(1): 16-25. doi: 10.13374/j.issn2095-9389.2019.06.24.006

鈣鈦礦太陽能電池穩定性研究進展

doi: 10.13374/j.issn2095-9389.2019.06.24.006
基金項目: 中央高校基礎研究基金資助項目(230201606500078);國家自然科學基金資助項目(U1702252,U1302274,51674026)
詳細信息
    通訊作者:

    E-mail:chywang@yeah.net

  • 中圖分類號: O472

Research progress on the stability of perovskite solar cells

More Information
  • 摘要: 從鈣鈦礦晶格結構和器件結構入手,介紹了鈣鈦礦電池的發展歷程,總結了A位,B位及X位的組分調控方法、一步法、兩步法及其他成膜方法,形貌控制方法,最后,詳細討論了鈣鈦礦太陽能電池穩定性的影響因素,光熱濕等因素是引起鈣鈦礦晶體分解,導致電池性能下降的主要原因。最后,穩定性問題已經成為阻礙鈣鈦礦電池產業化的最大的障礙,介紹了鈣鈦礦太陽能電池當前穩定性問題的主要解決方案:開發更穩定的鈣鈦礦結構,開發用于控制晶粒生長的新添加劑,以及選擇具有優異性能的空穴傳輸層和電子傳輸層。

     

  • 圖  1  鈣鈦礦電池器件效率發展圖

    Figure  1.  Perovskite battery device efficiency development chart

    圖  2  鈣鈦礦材料結構

    Figure  2.  Perovskite material structure

    圖  3  不同A位陽離子下(a)鈣鈦礦的容忍因子及(b)鈣鈦礦的3種晶體結構[15?16]

    Figure  3.  (a) Tolerance factors for perovskites at different A sites and (b) three crystal structures of perovskites[15?16]

    圖  4  MA和FA結構模型

    Figure  4.  MA and FA structural models

    圖  5  銣、銫摻雜部分取代甲脒陽離子制備的器件性能測試曲線. (a) Cs摻雜鈣鈦礦器件的性能;(b) Rb摻雜鈣鈦礦器件的性能;(c) Rb摻雜鈣鈦礦器件的穩定性測試[20]

    Figure  5.  Rubidium and cesium doped part substituted formamidine cationic preparation of the device performance test curves: (a) performance of Cs doped perovskite devices; (b) performance of Rb doped perovskite devices; (c) stability testing of Rb doped perovskite devices[20]

    圖  6  (a) MAPb1?a?bSnaCubI3?2bBr2b鈣鈦礦結構示意圖;(b) 鉛?錫?銅三元體系鈣鈦礦器件結構圖;(c) MAPb0.9Sn0.05Cu0.05I2.9Br0.1組分的器件效率[24]

    Figure  6.  (a) Schematic diagram of the MAPb1?a?bSnaCubI3?2bBr2b perovskite structure; (b) Pb?Sn?Cu ternary system perovskite device structure diagram; (c) MAPb0.9Sn0.05Cu0.05I2.9Br0.1 component device efficiency[24]

    圖  7  控制I與Br含量得到一系列不同吸收帶的鈣鈦礦材料[26]

    Figure  7.  Controlling the I and Br contents to obtain a series of perovskite materials with different absorption bands[26]

    圖  8  通過Cl離子摻雜控制鈣鈦礦結晶形貌[27]. (a) 實驗流程示意圖(PbI2:碘化鉛,MAI:甲基碘化銨,MACl:甲基氯化銨);(b) Cl離子摻雜器件的最佳性能圖

    Figure  8.  Crystal morphology of perovskite controlled by Cl ion doping[27]: (a) schematic diagram of experimental process (PbI2: lead iodide, MAI: methyl ammonium iodide, MACl: methyl ammonium chloride); (b) optimal performance diagram of Cl ion doped devices

    圖  9  MAPbI3薄膜在不同氣氛下85 ℃保持24 h后的衰減情況[28]. (a) 無處理,(b) N2氣氛,(c) O2氣氛,(d) 空氣

    Figure  9.  Attenuation of the MAPbI3 film after heating at 85 ℃ for 24 h in different atmospheres[28]: (a) without treatment; (b) N2 atmosphere; (c) O2 atmosphere; (d) air

    圖  10  MAPbI3器件在N2氣氛下連續光照老化后的器件性能(a)與離子的排布情況(b)[38]

    Figure  10.  Device performance (a) and ion arrangement (b) of MAPbI3 devices after continuous illumination aging under the N2 atmosphere[38]

    圖  11  PEA陽離子含量對CH3NH3PbI3形成能及穩定性(a)和CH3NH3PbI3器件性能(b)的影響[46]

    Figure  11.  Effect of PEA cation content on the formation energy and stability of CH3NH3PbI3 (a) and the performance of CH3NH3PbI3 devices (b)[46]

    圖  12  MAAc/TSC添加劑制備鈣鈦礦薄膜. (a) MAAc/TSC添加劑的結構示意圖;(b) CH3NH3PbI3薄膜生長過程;(c) 器件的連續光照穩定性和熱穩定性測試[55]

    Figure  12.  Preparation of perovskite thin films by MAAc/TSC additive: (a) schematic diagram of the MAAc/TSC additive; (b) CH3NH3PbI3 film growth process; (c) continuous illumination stability and thermal stability test[55]

    圖  13  ADAHX對鈣鈦礦薄膜的界面修飾. (a) ADAHX結構式;(b) ADAHX分子模型;(c) 鈣鈦礦薄膜的接觸角測試;(d) 界面修飾示意圖[58]

    Figure  13.  Interface modification of perovskite thin films by ADAHX: (a) structural formula of ADAHX; (b) molecular model of ADAHX; (c) contact angle test of perovskite thin films; (d) schematic diagram of interface modification[58]

    圖  14  CuCrO2作為空穴傳輸層所制備的器件表征圖. (a) 鈣鈦礦表面形貌;(b) CuCrO2薄膜表面形貌;(c) Spiro-OMeTAD做空穴傳輸層的器件截面圖;(d) CuCrO2做空穴傳輸層的器件截面圖;(e) 器件濕度穩定性測試(CCO:CuCrO2,cl-TiO2:致密TiO2層,mp-TiO2:介孔TiO2層,HTM:空穴傳輸層)

    Figure  14.  Device characterization diagram prepared by CuCrO2 as a hole transport layer: (a) surface morphology of perovskite; (b) surface morphology of CuCrO2 film; (c) cross section of device for hole transport layer of Spiro-OMeTAD; (d) cross-sectional view of device for hole transport layer of CuCrO2; (e) device humidity stability test (CCO: CuCrO2, cl-TiO2: compact TiO2 layer, mp-tio2: mesoporous TiO2 layer, HTM: hole transport layer)

    久色视频
  • [1] Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc, 2009, 131(17): 6050 doi: 10.1021/ja809598r
    [2] Wang S H, Sakurai T, Wen W J, et al. Energy level alignment at interfaces in metal halide perovskite solar cells. Adv Mater Interfaces, 2018, 5(22): 1800260 doi: 10.1002/admi.201800260
    [3] Li Y, Ji L, Liu R G, et al. A review on morphology engineering for highly efficient and stable hybrid perovskite solar cells. J Mater Chem A, 2018, 6(27): 12842 doi: 10.1039/C8TA04120B
    [4] Petrus M L, Schlipf J, Li C, et al. Capturing the sun: a review of the challenges and perspectives of perovskite solar cells. Adv Energy Mater, 2017, 7(16): 1700264 doi: 10.1002/aenm.201700264
    [5] Gong J, Guo P J, Benjamin S E, et al. Cation engineering on lead iodide perovskites for stable and high-performance photovoltaic applications. J Energy Chem, 2018, 27(4): 1017 doi: 10.1016/j.jechem.2017.12.005
    [6] Im J H, Lee C R, Lee J W, et al. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale, 2011, 3(10): 4088 doi: 10.1039/c1nr10867k
    [7] Kim H S, Lee C R, Im J H, et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep, 2012, 2: 591 doi: 10.1038/srep00591
    [8] Yang W S, Noh J H, Jeon N J, et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 2015, 348(6240): 1234 doi: 10.1126/science.aaa9272
    [9] Jiang Q, Zhao Y, Zhang X W, et al. Surface passivation of perovskite film for efficient solar cells. Nat Photonics, 2019, 13: 460 doi: 10.1038/s41566-019-0398-2
    [10] Yang S, Chen S, Mosconi E, et al. Stabilizing halide perovskite surfaces for solar cell operation with wide-bandgap lead oxysalts. Science, 2019, 365(6452): 473 doi: 10.1126/science.aax3294
    [11] Chen Q, De Marco N, Yang Y M, et al. Under the spotlight: the organic–inorganic hybrid halide perovskite for optoelectronic applications. Nano Today, 2015, 10(3): 355 doi: 10.1016/j.nantod.2015.04.009
    [12] Green M A, Ho-Baillie A, Snaith H J. The emergence of perovskite solar cells. Nat Photonics, 2014, 8: 506 doi: 10.1038/nphoton.2014.134
    [13] Kim H S, Im S H, Park N G. Organolead halide perovskite: new horizons in solar cell research. J Phys Chem C, 2014, 118(11): 5615 doi: 10.1021/jp409025w
    [14] Sum T C, Mathews N. Advancements in perovskite solar cells: photophysics behind the photovoltaics. Energy Environ Sci, 2014, 7(8): 2518 doi: 10.1039/C4EE00673A
    [15] Han G F, Hadi H D, Bruno A, et al. Additive selection strategy for high performance perovskite photovoltaics. J Phys Chem C, 2017, 122(25): 13884
    [16] Da P M, Zheng G F. Tailoring interface of lead-halide perovskite solar cells. Nano Res, 2017, 10(5): 1471 doi: 10.1007/s12274-016-1405-2
    [17] Gholipour S, Saliba M. From exceptional properties to stability challenges of perovskite solar cells. Small, 2018, 14(46): 1802385 doi: 10.1002/smll.201802385
    [18] Pang S P, Hu H, Zhang J L, et al. NH2CH═NH2PbI3: an alternative organolead iodide perovskite sensitizer for mesoscopic solar cells. Chem Mater, 2014, 26(3): 1485 doi: 10.1021/cm404006p
    [19] Jeon N J, Noh J H, Yang W S, et al. Compositional engineering of perovskite materials for high-performance solar cells. Nature, 2015, 517(7535): 476 doi: 10.1038/nature14133
    [20] Saliba M, Matsui T, Seo J Y, et al. Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ Sci, 2016, 9(6): 1989 doi: 10.1039/C5EE03874J
    [21] Shi Z J, Guo J, Chen Y H, et al. Lead-free organic?inorganic hybrid perovskites for photovoltaic applications: recent advances and perspectives. Adv Mater, 2017, 29(16): 1605005 doi: 10.1002/adma.201605005
    [22] Jokar E, Chien C H, Fathi A, et al. Slow surface passivation and crystal relaxation with additives to improve device performance and durability for tin-based perovskite solar cells. Energy Environ Sci, 2018, 11(9): 2353 doi: 10.1039/C8EE00956B
    [23] Xiao Z W, Song Z N, Yan Y F. From lead halide perovskites to lead-free metal halide perovskites and perovskite derivatives. Adv Mater, 2019, 31(47): 1803792 doi: 10.1002/adma.201803792
    [24] Li M, Wang Z K, Zhuo M P, et al. Pb–Sn?Cu ternary organometallic halide perovskite solar cells. Adv Mater, 2018, 30(20): 1800258 doi: 10.1002/adma.201800258
    [25] Saliba M, Correa-Baena J P, Gr?tzel M, et al. Perovskite solar cells: from the atomic level to film quality and device performance. Angew Chem Int Ed, 2018, 57(10): 2554 doi: 10.1002/anie.201703226
    [26] Eperon G E, Stranks S D, Menelaou C, et al. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ Sci, 2014, 7(3): 982 doi: 10.1039/c3ee43822h
    [27] Chen Q, Zhou H P, Fang Y H, et al. The optoelectronic role of chlorine in CH3NH3PbI3(Cl)-based perovskite solar cells. Nat Commun, 2015, 6: 7269 doi: 10.1038/ncomms8269
    [28] Conings B, Drijkoningen J, Gauquelin N, et al. Intrinsic thermal instability of methylammonium lead trihalide perovskite. Adv Energy Mater, 2015, 5(15): 1500477 doi: 10.1002/aenm.201500477
    [29] Huang J B, Tan S Q, Lund P D, et al. Impact of H2O on organic–inorganic hybrid perovskite solar cells. Energy Environ Sci, 2017, 10(11): 2284 doi: 10.1039/C7EE01674C
    [30] Eperon G E, Habisreutinger S N, Leijtens T, et al. The importance of moisture in hybrid lead halide perovskite thin film fabrication. ACS Nano, 2015, 9(9): 9380 doi: 10.1021/acsnano.5b03626
    [31] Fu Q X, Tang X L, Huang B, et al. Recent progress on the long-term stability of perovskite solar cells. Adv Sci, 2018, 5(5): 1700387 doi: 10.1002/advs.201700387
    [32] Jeon N J, Na H, Jung E H, et al. A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nat Energy, 2018, 3: 682 doi: 10.1038/s41560-018-0200-6
    [33] Zhang C X, Deng X S, Zheng J F, et al. Solution-synthesized SnO2 nanorod arrays for highly stable and efficient perovskite solar cells. Electrochim Acta, 2018, 283: 1134 doi: 10.1016/j.electacta.2018.07.028
    [34] Tavakoli M M, Yadav P, Tavakoli R, et al. Surface engineering of TiO2 ETL for highly efficient and hysteresis?less planar perovskite solar cell (21.4%) with enhanced open?circuit voltage and stability. Adv Energy Mater, 2018, 8(23): 1800794 doi: 10.1002/aenm.201800794
    [35] Mahmoudi T, Wang Y S, Hahn Y B. Stability enhancement in perovskite solar cells with perovskite/silver–graphene composites in the active layer. ACS Energy Lett, 2019, 4(1): 235 doi: 10.1021/acsenergylett.8b02201
    [36] Li Z, Xiao C X, Yang Y, et al. Extrinsic ion migration in perovskite solar cells. Energy Environ Sci, 2017, 10(5): 1234 doi: 10.1039/C7EE00358G
    [37] Wei D, Ma F S, Wang R, et al. Ion-migration inhibition by the cation-π interaction in perovskite materials for efficient and stable perovskite solar cells. Adv Mater, 2018, 30(31): 1707583 doi: 10.1002/adma.201707583
    [38] Liu L, Huang S, Lu Y, et al. Grain-boundary “patches” by in situ conversion to enhance perovskite solar cells stability. Adv Mater, 2018, 30(29): 1800544 doi: 10.1002/adma.201800544
    [39] Tsai H, Asadpour R, Blancon J C, et al. Design principles for electronic charge transport in solution-processed vertically stacked 2D perovskite quantum wells. Nat Commun, 2018, 9: 2130 doi: 10.1038/s41467-018-04430-2
    [40] Chen P, Bai Y, Wang S C, et al. In situ growth of 2D perovskite capping layer for stable and efficient perovskite solar cells. Adv Funct Mater, 2018, 28(17): 1706923 doi: 10.1002/adfm.201706923
    [41] Lin Y, Bai Y, Fang Y J, et al. Enhanced thermal stability in perovskite solar cells by assembling 2D/3D stacking structures. J Phys Chem Lett, 2018, 9(3): 654 doi: 10.1021/acs.jpclett.7b02679
    [42] Thote A, Jeon I, Lee J W, et al. Stable and reproducible 2D/3D formamidinium–lead–iodide perovskite solar cells. ACS Appl Energy Mater, 2019, 2(4): 2486 doi: 10.1021/acsaem.8b01964
    [43] Lee J W, Dai Z H, Han T H, et al. 2D perovskite stabilized phase-pure formamidinium perovskite solar cells. Nat Commun, 2018, 9: 3021 doi: 10.1038/s41467-018-05454-4
    [44] Li M H, Yeh H S, Chiang Y H, et al. Highly efficient 2D/3D hybrid perovskite solar cells via low-pressure vapor-assisted solution process. Adv Mater, 2018, 30(30): 1801401 doi: 10.1002/adma.201801401
    [45] Smith I C, Hoke E T, Solis-Ibarra D, et al. A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. Angew Chem Int Ed, 2014, 53(42): 11232 doi: 10.1002/anie.201406466
    [46] Quan L N, Yuan M J, Comin R, et al. Ligand-stabilized reduced-dimensionality perovskites. J Am Chem Soc, 2016, 138(8): 2649 doi: 10.1021/jacs.5b11740
    [47] Seok S I, Gr?tzel M, Park N G. Methodologies toward highly efficient perovskite solar cells. Small, 2018, 14(20): 1704177 doi: 10.1002/smll.201704177
    [48] Li L, Chen Y H, Liu Z H, et al. The additive coordination effect on hybrids perovskite crystallization and high-performance solar cell. Adv Mater, 2016, 28(44): 9862 doi: 10.1002/adma.201603021
    [49] Huang P H, Wang Y H, Ke J C, et al. The effect of solvents on the performance of CH3NH3PbI3 perovskite solar cells. Energies, 2017, 10(5): 599 doi: 10.3390/en10050599
    [50] Han F, Luo J S, Malik H A, et al. A functional sulfonic additive for high efficiency and low hysteresis perovskite solar cells. J Power Sources, 2017, 359: 577 doi: 10.1016/j.jpowsour.2017.05.084
    [51] Fei C B, Li B, Zhang R, et al. Highly efficient and stable perovskite solar cells based on monolithically grained CH3NH3PbI3 film. Adv Energy Mater, 2017, 7(9): 1602017 doi: 10.1002/aenm.201602017
    [52] Niu T Q, Lu J, Munir R, et al. Stable high-performance perovskite solar cells via grain boundary passivation. Adv Mater, 2018, 30(16): 1706576 doi: 10.1002/adma.201706576
    [53] Li X D, Zhang W X, Wang Y C, et al. In-situ cross-linking strategy for efficient and operationally stable methylammoniun lead iodide solar cells. Nat Commun, 2018, 9: 3806 doi: 10.1038/s41467-018-06204-2
    [54] Feng J S, Zhu X J, Yang Z, et al. Record efficiency stable flexible perovskite solar cell using effective additive assistant strategy. Adv Mater, 2018, 30(35): 1801418 doi: 10.1002/adma.201801418
    [55] Wu Y Z, Xie F X, Chen H, et al. Thermally stable MAPbI3 perovskite solar cells with efficiency of 19.19% and area over 1 cm2 achieved by additive engineering. Adv Mater, 2017, 29(28): 17011073
    [56] Tavakoli M M, Bi D Q, Pan L F, et al. Adamantanes enhance the photovoltaic performance and operational stability of perovskite solar cells by effective mitigation of interfacial defect states. Adv Energy Mater, 2018, 8(19): 1800275 doi: 10.1002/aenm.201800275
    [57] Tavakoli M M, Yadav P, Prochowicz D, et al. Controllable perovskite crystallization via antisolvent technique using chloride additives for highly efficient planar perovskite solar cells. Adv Energy Mater, 2019, 9(17): 1803587 doi: 10.1002/aenm.201803587
    [58] Tavakoli M M, Tress W, Mili? J V, et al. Addition of adamantylammonium iodide to hole transport layers enables highly efficient and electroluminescent perovskite solar cells. Energy Environ Sci, 2018, 11(11): 3310 doi: 10.1039/C8EE02404A
    [59] Li X, Yang J Y, Jiang Q H, et al. Perovskite solar cells employing an eco-friendly and low-cost inorganic hole transport layer for enhanced photovoltaic performance and operational stability. J Mater Chem A, 2019, 7(12): 7065 doi: 10.1039/C9TA01499C
    [60] Kung P K, Li M H, Lin P Y, et al. A review of inorganic hole transport materials for perovskite solar cells. Adv Mater Interfaces, 2018, 5(22): 1800882 doi: 10.1002/admi.201800882
    [61] Kang J S, Kim J Y, Yoon J, et al. Room-temperature vapor deposition of cobalt nitride nanofilms for mesoscopic and perovskite solar cells. Adv Energy Mater, 2018, 8(13): 1703114 doi: 10.1002/aenm.201703114
    [62] Arora N, Dar M I, Hinderhofer A, et al. Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%. Science, 2017, 358(6364): 768 doi: 10.1126/science.aam5655
    [63] Zhang H, Wang H, Chen W, et al. CuGaO2: a promising inorganic hole-transporting material for highly efficient and stable perovskite solar cells. Adv Mater, 2017, 29(8): 1604984 doi: 10.1002/adma.201604984
    [64] Akin S, Liu Y H, Dar M I, et al. Hydrothermally processed CuCrO2 nanoparticles as an inorganic hole transporting material for low-cost perovskite solar cells with superior stability. J Mater Chem A, 2018, 6(41): 20327 doi: 10.1039/C8TA07368F
  • 加載中
圖(14)
計量
  • 文章訪問數:  3442
  • HTML全文瀏覽量:  5149
  • PDF下載量:  450
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-06-24
  • 刊出日期:  2020-01-01

目錄

    /

    返回文章
    返回