<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

FeSiAl電磁屏蔽涂層的腐蝕行為對吸波性能的影響

盧桃麗 范書亭 盧琳 馬政 陳恒

盧桃麗, 范書亭, 盧琳, 馬政, 陳恒. FeSiAl電磁屏蔽涂層的腐蝕行為對吸波性能的影響[J]. 工程科學學報, 2019, 41(10): 1324-1331. doi: 10.13374/j.issn2095-9389.2019.04.01.003
引用本文: 盧桃麗, 范書亭, 盧琳, 馬政, 陳恒. FeSiAl電磁屏蔽涂層的腐蝕行為對吸波性能的影響[J]. 工程科學學報, 2019, 41(10): 1324-1331. doi: 10.13374/j.issn2095-9389.2019.04.01.003
LU Tao-li, FAN Shu-ting, LU Lin, MA Zheng, CHEN Heng. Effect of corrosion performance of FeSiAl electromagnetic shielding coating on absorbing properties[J]. Chinese Journal of Engineering, 2019, 41(10): 1324-1331. doi: 10.13374/j.issn2095-9389.2019.04.01.003
Citation: LU Tao-li, FAN Shu-ting, LU Lin, MA Zheng, CHEN Heng. Effect of corrosion performance of FeSiAl electromagnetic shielding coating on absorbing properties[J]. Chinese Journal of Engineering, 2019, 41(10): 1324-1331. doi: 10.13374/j.issn2095-9389.2019.04.01.003

FeSiAl電磁屏蔽涂層的腐蝕行為對吸波性能的影響

doi: 10.13374/j.issn2095-9389.2019.04.01.003
基金項目: 

海洋裝備用金屬材料及其應用國家重點實驗室開放基金課題資助項目 HG-SKL (2018)04

詳細信息
    通訊作者:

    盧琳, E-mail: lu_lin@mater.ustb.edu.cn

  • 中圖分類號: TG174

Effect of corrosion performance of FeSiAl electromagnetic shielding coating on absorbing properties

More Information
  • 摘要: 以在Q235冷軋鋼板表面涂敷的FeSiAl電磁屏蔽涂層為研究對象,通過改變固化條件,探究了電磁屏蔽涂層的最優固化環境.同時,運用中性鹽霧試驗、電磁屏蔽性能測試和電化學阻抗試驗,研究了自然條件固化后涂層的吸波性能和耐蝕性能隨鹽霧周期不同的變化規律.結果表明,電磁場下固化會損害涂層的腐蝕屏蔽性.吸波劑含量的增加不利于提升涂層的吸波性能,同時也會損害涂層的腐蝕屏蔽性.長期鹽霧試驗后,涂層的吸波性能隨腐蝕屏蔽性的降低而下降.

     

  • 圖  1  電磁場分布圖

    Figure  1.  Electromagnetic field distribution

    圖  2  不同環境下固化的50%FeSiAl的吸波涂層微觀形貌. (a)自然環境下固化; (b)0.1 T電磁場下固化

    Figure  2.  Microscopic images of 50% FeSiAl coatings cured in different environments: (a) curing in the natural environment; (b) curing under 0.1 T electromagnetic field

    圖  3  不同環境下固化的含50%FeSiAl涂層的電化學阻抗低頻模值圖. (a)自然環境下固化; (b)0.1 T電磁場下固化

    Figure  3.  Electrochemical impedance spectroscopies of 50% FeSiAl coatings cured in different curing environments: (a) curing in the natural environment; (b) curing under 0.1 T electromagnetic field

    圖  4  不同質量分數的FeSiAl涂層經過不同鹽霧周期后的宏觀形貌. (a)30%, 0周; (b)30%, 4周; (c)30%, 8周; (d)50%, 0周; (e)50%, 4周; (f)50%, 8周

    Figure  4.  Macroscopic images of the different FeSiAl coating contents: (a)30%, 0week; (b)30%, 4 weeks; (c)30%, 8 weeks; (d)50%, 0 week; (e)50%, 4 weeks; (f)50%, 8 weeks

    圖  5  不同質量分數的FeSiAl涂層的電化學阻抗譜. (a)30%;(b)50%

    Figure  5.  Electrochemical impedance spectroscopies of different mass fractions of the FeSiAl coatings: (a)30%; (b)50%

    圖  6  不同質量分數的FeSiAl涂層經過不同鹽霧周期后的反射損耗曲線. (a)0周; (b)4周; (c)8周

    Figure  6.  Reflection loss of different mass fractions of the FeSiAl coatings in different salt spray cycles: (a)0 week; (b)4 weeks; (c)8 weeks

    圖  7  不同條件下固化完全的FeSiAl涂層阻抗模值(0.01 Hz)隨電化學測試浸泡時間延長的變化規律

    Figure  7.  Relationship between low-frequency impedance moduli and electrochemical test immersion times of the FeSiAl coatings in different curing environments

    圖  8  FeSiAl涂層的最小反射損耗與低頻阻抗模值之間的關系

    Figure  8.  Relationship between minimum reflectivity and low-frequency impedance moduli of the FeSiAl coatings and nickel-based coatings

    表  1  實驗所用基本原料

    Table  1.   Basic materials used in the experiment

    原料 作用 廠家
    FeSiAl吸波涂料 涂層 大連理工
    NaCl 鹽霧及電化學測試 西亞化工
    下載: 導出CSV

    表  2  吸波涂層經過不同鹽霧周期后的吸波參數及低頻阻抗模值

    Table  2.   Absorbing parameters and low-frequency impedance moduli of absorbing coatings after different salt spray cycles

    試樣編號 反射損耗低于-10 dB 最小反射損耗/dB |Z|0.01 Hz
    吸收頻段/GHz 有效帶寬/GHz
    30% FSA(0) 13.44~17.93 4.49 -14.03 2.61×1010
    30% FSA(4) 16.49~18 1.51 -13.70 9.96×109
    30% FSA(8) 12.98~16.68 3.7 -12.18 2.06×109
    50% FSA(0) -9.1 6.67×108
    50% FSA(4) -7.24 7.51×107
    50% FSA(8) -6.84 7.26×106
    下載: 導出CSV
    久色视频
  • [1] Wang L J, Gao H F. Summarization of antiradar coatings. Surf Technol, 2004, 33(6): 13 doi: 10.3969/j.issn.1001-3660.2004.06.005

    王連杰, 高煥方. 吸波涂料概述. 表面技術, 2004, 33(6): 13 doi: 10.3969/j.issn.1001-3660.2004.06.005
    [2] Wang D L, Sikora E, Shaw B. A study of the effects of filler particles on the degradation mechanisms of powder epoxy novolac coating systems under corrosion and erosion. Prog Org Coat, 2018, 121: 97 doi: 10.1016/j.porgcoat.2018.04.026
    [3] Dhoke S K, Khanna A S, Sinha T J M. Effect of nano-ZnO particles on the corrosion behavior of alkyd-based waterborne coatings. Prog Org Coat, 2009, 64(4): 371 doi: 10.1016/j.porgcoat.2008.07.023
    [4] Tong Y, Bohm S, Song M. The capability of graphene on improving the electrical conductivity and anti-corrosion properties of Polyurethane coatings. Appl Surf Sci, 2017, 424: 72 doi: 10.1016/j.apsusc.2017.02.081
    [5] Yang Z Q, Sun W, Wang L D, et al. Liquid-phase exfoliated fluorographene as a two dimensional coating filler for enhanced corrosion protection performance. Corros Sci, 2016, 103: 312 doi: 10.1016/j.corsci.2015.10.039
    [6] Li S J, Sun W, Yang Z Q, et al. Influences of semiconductor oxide fillers on the corrosion behavior of metals under coatings. Electrochim Acta, 2018, 292: 425 doi: 10.1016/j.electacta.2018.08.116
    [7] Xie D, Wei H Y, He M, et al. Ferromagnetic carbon-based composites for wave absorbing materials. Mater Rev, 2017, 31(Suppl 2): 125 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB2017S2027.htm

    謝迪, 韋紅余, 何敏, 等. 用于吸波材料的鐵磁性/碳材料復合物. 材料導報, 2017, 31(增刊2): 125 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB2017S2027.htm
    [8] Ban G D, Liu Z H, Ye S T, et al. Dispersion properties on nickalloy/iron package mica powder composite absorbing coatings. Equip Environ Eng, 2017, 14(3): 95 https://www.cnki.com.cn/Article/CJFDTOTAL-JSCX201703022.htm

    班國東, 劉朝輝, 葉圣天, 等. 鎳鐵合金/鐵包云母粉復合吸波涂層材料的頻散特性. 裝備環境工程, 2017, 14(3): 95 https://www.cnki.com.cn/Article/CJFDTOTAL-JSCX201703022.htm
    [9] Zhao L Z, Hu S J, He Q Y, et al. Shielding principle and research progress of electromagnetic shielding materials. Packag Eng, 2006, 27(2): 1 doi: 10.3969/j.issn.1001-3563.2006.02.001

    趙靈智, 胡社軍, 何琴玉, 等. 電磁屏蔽材料的屏蔽原理與研究現狀. 包裝工程, 2006, 27(2): 1 doi: 10.3969/j.issn.1001-3563.2006.02.001
    [10] Jin W G. Development and applications of carbon fiber in EMS composites. Hi-Tech Fiber Appl, 2003, 28(4): 9 doi: 10.3969/j.issn.1007-9815.2003.04.003

    靳武剛. 碳纖維在電磁屏蔽材料中的應用研究. 高科技纖維與應用, 2003, 28(4): 9 doi: 10.3969/j.issn.1007-9815.2003.04.003
    [11] Jin D, Qi Y D, Guo Y P, et al. Absorbing properties of carbon fiber/FeSiAl composite in low frequency band. Mater Rev, 2016, 30(10): 26 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201620006.htm

    金丹, 祁遠東, 郭宇鵬, 等. 碳纖維/鐵硅鋁復合材料的低頻吸波性能. 材料導報, 2016, 30(10): 26 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201620006.htm
    [12] Wang T, Wei J Q, Zhang Z Q, et al. Radar wave absorption mechanism of the flake-shaped FeSiAl particle composite. Mater China, 2013, 32(2): 94 https://www.cnki.com.cn/Article/CJFDTOTAL-XJKB201302005.htm

    王濤, 位建強, 張釗琦, 等. 片形FeSiAl磁粉復合材料的雷達波吸收機理. 中國材料進展, 2013, 32(2): 94 https://www.cnki.com.cn/Article/CJFDTOTAL-XJKB201302005.htm
    [13] Zhang Y Q, Ding Y G, Yin S Y, et al. Electrical and magnetic characteristic study of FeSiAl microwave attenuating coatings. Vac Electron, 2006(6): 39 doi: 10.3969/j.issn.1002-8935.2006.06.012

    張永清, 丁耀根, 陰生毅, 等. FeSiAl微波衰減涂層電磁特性分析. 真空電子技術, 2006(6): 39 doi: 10.3969/j.issn.1002-8935.2006.06.012
    [14] Sun J, Xu H L, Shen Y, et al. Enhanced microwave absorption properties of the milled flake-shaped FeSiAl/graphite composites. J Alloys Compd, 2013, 548: 18 doi: 10.1016/j.jallcom.2012.08.114
    [15] Zhao K H, Chen X M. Electromagnetism. 4th Ed. Beijing: Higher Education Press, 2018

    趙凱華, 陳熙謀. 電磁學. 4版. 北京: 高等教育出版社, 2018
    [16] Wang Q, Wang C J, Pang X J, et al. Control of solidified structures of Al-Si hypereutectic alloy by using intense magnetic fields. Chin J Mater Res, 2004, 18(6): 568 doi: 10.3321/j.issn:1005-3093.2004.06.002

    王強, 王春江, 龐雪君, 等. 利用強磁場控制過共晶鋁硅合金的凝固組織. 材料研究學報, 2004, 18(6): 568 doi: 10.3321/j.issn:1005-3093.2004.06.002
    [17] Goc K, Gaska K, Klimczyk K, et al. Influence of magnetic field-aided filler orientation on structure and transport properties of ferrite filled composites. J Magn Magn Mater, 2016, 419: 345 doi: 10.1016/j.jmmm.2016.06.046
    [18] Lee J Y, Kumar V, Lee D J. Compressive properties of magnetorheological elastomer with different magnetic fields and types of filler. Polym Adv Technol, 2019, 30(4): 1106 doi: 10.1002/pat.4544
    [19] Zhu Y S, Umehara N, Ido Y, et al. Computer simulation of structures and distributions of particles in MAGIC fluid. J Magn Magn Mater, 2006, 302(1): 96 doi: 10.1016/j.jmmm.2005.08.015
    [20] Sun X, Zhang L B, Sun H K, et al. Research progress and application field of magnetic particle motion mechanism in magnetic field. Mine Eng, 2017, 5(4): 114

    孫欣, 章禮斌, 孫浩楷, 等. 磁場中磁性顆粒運動機理的研究進展及應用領域. 礦山工程, 2017, 5(4): 114
    [21] Adams J D, Kim U, Soh H T. Multitarget magnetic activated cell sorter. Proc Natl Acad Sci USA, 2008, 105(47): 18165 doi: 10.1073/pnas.0809795105
    [22] Tokura S, Hara M, Kawaguchi N, et al. The behavior of nano-and micro-magnetic particles under a high magnetic field using a superconducting magnet. IEEE Trans Appl Supercond, 2014, 24(3): 3700305 http://ieeexplore.ieee.org/document/6650034/
    [23] Rodríguez-Arco L, López-López M T, Durán J D G, et al. Stability and magnetorheological behaviour of magnetic fluids based on ionic liquids. J Phys Condens Matter, 2011, 23(45): 455101 doi: 10.1088/0953-8984/23/45/455101
    [24] Nagato K, Oshima T, Kuwayama A, et al. Microscopic observation of behavior of magnetic particle clusters during torque transfer between magnetic poles. J Appl Phys, 2015, 117(17): 17C729 doi: 10.1063/1.4916113
    [25] Ando T, Hirota N, Wada H. Numerical simulation of chainlike cluster movement of feeble magnetic particles by induced magnetic dipole moment under high magnetic fields. Sci Technol Adv Mater, 2009, 10(1): 014609 doi: 10.1088/1468-6996/10/1/014609
    [26] Chu H R, Chen P, Yu Q, et al. Preparation and microwave absorption properties of FeCo/graphene. Chin J Mater Res, 2018, 32(3): 161 https://www.cnki.com.cn/Article/CJFDTOTAL-CYJB201803001.htm

    褚海榮, 陳平, 于祺, 等. FeCo/石墨烯的制備和吸波性能. 材料研究學報, 2018, 32(3): 161 https://www.cnki.com.cn/Article/CJFDTOTAL-CYJB201803001.htm
    [27] Wang T, Zhang J M, Wang P, et al. The absorption mechanism of radar absorber and performance evaluation criterion of absorbent. J Magn Mater Devices, 2016, 47(6): 7 doi: 10.3969/j.issn.1001-3830.2016.06.002

    王濤, 張峻銘, 王鵬, 等. 吸波材料吸波機制及吸波劑性能優劣評價方法. 磁性材料及器件, 2016, 47(6): 7 doi: 10.3969/j.issn.1001-3830.2016.06.002
    [28] Liu X W, Chen X, Wang X J, et al. Recent progress in magnetic absorbing materials. Surf Technol, 2013, 42(4): 104 https://www.cnki.com.cn/Article/CJFDTOTAL-BMJS201304027.htm

    劉祥萱, 陳鑫, 王煊軍, 等. 磁性吸波材料的研究進展. 表面技術, 2013, 42(4): 104 https://www.cnki.com.cn/Article/CJFDTOTAL-BMJS201304027.htm
  • 加載中
圖(8) / 表(2)
計量
  • 文章訪問數:  744
  • HTML全文瀏覽量:  301
  • PDF下載量:  24
  • 被引次數: 0
出版歷程
  • 收稿日期:  2019-04-01
  • 刊出日期:  2019-10-01

目錄

    /

    返回文章
    返回