Effect of corrosion performance of FeSiAl electromagnetic shielding coating on absorbing properties
-
摘要: 以在Q235冷軋鋼板表面涂敷的FeSiAl電磁屏蔽涂層為研究對象,通過改變固化條件,探究了電磁屏蔽涂層的最優固化環境.同時,運用中性鹽霧試驗、電磁屏蔽性能測試和電化學阻抗試驗,研究了自然條件固化后涂層的吸波性能和耐蝕性能隨鹽霧周期不同的變化規律.結果表明,電磁場下固化會損害涂層的腐蝕屏蔽性.吸波劑含量的增加不利于提升涂層的吸波性能,同時也會損害涂層的腐蝕屏蔽性.長期鹽霧試驗后,涂層的吸波性能隨腐蝕屏蔽性的降低而下降.Abstract: As science and high-tech have developed, stealth technology has gained increasing prominence in the military field. Application of stealth technology can improve the survival, defense, and attack capabilities of military equipment, thus it has become a focus in the field of modern military science. As the core part of radar stealth technology, absorbing materials are widely required by various industries. For military equipment such as ships operating in the marine environment, absorptive coating can not only make the military equipment effectively invisible, but can also enhance the corrosion protection capability of the equipment itself. Once the surface of an absorptive coating is corroded, not only will its corrosion resistance become compromised, but its absorbing performance may also be affected, leading to threats and hidden dangers to the safety of the weapons and equipment. At present, most researchers are paying more attention to the effect of absorbent particles on absorbing properties during studies of absorptive coatings. However, after addition of absorbent particles, the effect of the absorptive coating on a material's absorbing properties is unknown when corrosion resistance is constantly changing. Therefore, research in this area is of great significance in selection of surface absorbing coatings for marine weapons and equipment. In this study, FeSiAl electromagnetic shielding coating, based on Q235 cold-rolled steel, was used as the experimental material. By changing curing conditions, the optimal curing environment for electromagnetic shielding coating was explored. At the same time, the neutral salt spray test, electromagnetic shielding performance test, and electrochemical impedance test were applied to study the variations in absorption and corrosion resistance of the coating after curing in natural conditions during the salt spray period. Results show that curing under an electromagnetic field can impair the corrosion resistance of the coating. Increasing the content of the absorbing agent was not conducive to improving the absorbing properties of the coating, and impaired the corrosion shielding properties of the coating. After the long-term salt spray test, absorbing properties of the coating decreased with decreasing corrosion shielding properties.
-
Key words:
- FeSiAl /
- absorbing coating /
- corrosion resistance /
- electromagnetic shielding /
- absorbing properties
-
表 1 實驗所用基本原料
Table 1. Basic materials used in the experiment
原料 作用 廠家 FeSiAl吸波涂料 涂層 大連理工 NaCl 鹽霧及電化學測試 西亞化工 表 2 吸波涂層經過不同鹽霧周期后的吸波參數及低頻阻抗模值
Table 2. Absorbing parameters and low-frequency impedance moduli of absorbing coatings after different salt spray cycles
試樣編號 反射損耗低于-10 dB 最小反射損耗/dB |Z|0.01 Hz/Ω 吸收頻段/GHz 有效帶寬/GHz 30% FSA(0) 13.44~17.93 4.49 -14.03 2.61×1010 30% FSA(4) 16.49~18 1.51 -13.70 9.96×109 30% FSA(8) 12.98~16.68 3.7 -12.18 2.06×109 50% FSA(0) — — -9.1 6.67×108 50% FSA(4) — — -7.24 7.51×107 50% FSA(8) — — -6.84 7.26×106 -
參考文獻
[1] Wang L J, Gao H F. Summarization of antiradar coatings. Surf Technol, 2004, 33(6): 13 doi: 10.3969/j.issn.1001-3660.2004.06.005王連杰, 高煥方. 吸波涂料概述. 表面技術, 2004, 33(6): 13 doi: 10.3969/j.issn.1001-3660.2004.06.005 [2] Wang D L, Sikora E, Shaw B. A study of the effects of filler particles on the degradation mechanisms of powder epoxy novolac coating systems under corrosion and erosion. Prog Org Coat, 2018, 121: 97 doi: 10.1016/j.porgcoat.2018.04.026 [3] Dhoke S K, Khanna A S, Sinha T J M. Effect of nano-ZnO particles on the corrosion behavior of alkyd-based waterborne coatings. Prog Org Coat, 2009, 64(4): 371 doi: 10.1016/j.porgcoat.2008.07.023 [4] Tong Y, Bohm S, Song M. The capability of graphene on improving the electrical conductivity and anti-corrosion properties of Polyurethane coatings. Appl Surf Sci, 2017, 424: 72 doi: 10.1016/j.apsusc.2017.02.081 [5] Yang Z Q, Sun W, Wang L D, et al. Liquid-phase exfoliated fluorographene as a two dimensional coating filler for enhanced corrosion protection performance. Corros Sci, 2016, 103: 312 doi: 10.1016/j.corsci.2015.10.039 [6] Li S J, Sun W, Yang Z Q, et al. Influences of semiconductor oxide fillers on the corrosion behavior of metals under coatings. Electrochim Acta, 2018, 292: 425 doi: 10.1016/j.electacta.2018.08.116 [7] Xie D, Wei H Y, He M, et al. Ferromagnetic carbon-based composites for wave absorbing materials. Mater Rev, 2017, 31(Suppl 2): 125 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB2017S2027.htm謝迪, 韋紅余, 何敏, 等. 用于吸波材料的鐵磁性/碳材料復合物. 材料導報, 2017, 31(增刊2): 125 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB2017S2027.htm [8] Ban G D, Liu Z H, Ye S T, et al. Dispersion properties on nickalloy/iron package mica powder composite absorbing coatings. Equip Environ Eng, 2017, 14(3): 95 https://www.cnki.com.cn/Article/CJFDTOTAL-JSCX201703022.htm班國東, 劉朝輝, 葉圣天, 等. 鎳鐵合金/鐵包云母粉復合吸波涂層材料的頻散特性. 裝備環境工程, 2017, 14(3): 95 https://www.cnki.com.cn/Article/CJFDTOTAL-JSCX201703022.htm [9] Zhao L Z, Hu S J, He Q Y, et al. Shielding principle and research progress of electromagnetic shielding materials. Packag Eng, 2006, 27(2): 1 doi: 10.3969/j.issn.1001-3563.2006.02.001趙靈智, 胡社軍, 何琴玉, 等. 電磁屏蔽材料的屏蔽原理與研究現狀. 包裝工程, 2006, 27(2): 1 doi: 10.3969/j.issn.1001-3563.2006.02.001 [10] Jin W G. Development and applications of carbon fiber in EMS composites. Hi-Tech Fiber Appl, 2003, 28(4): 9 doi: 10.3969/j.issn.1007-9815.2003.04.003靳武剛. 碳纖維在電磁屏蔽材料中的應用研究. 高科技纖維與應用, 2003, 28(4): 9 doi: 10.3969/j.issn.1007-9815.2003.04.003 [11] Jin D, Qi Y D, Guo Y P, et al. Absorbing properties of carbon fiber/FeSiAl composite in low frequency band. Mater Rev, 2016, 30(10): 26 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201620006.htm金丹, 祁遠東, 郭宇鵬, 等. 碳纖維/鐵硅鋁復合材料的低頻吸波性能. 材料導報, 2016, 30(10): 26 https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201620006.htm [12] Wang T, Wei J Q, Zhang Z Q, et al. Radar wave absorption mechanism of the flake-shaped FeSiAl particle composite. Mater China, 2013, 32(2): 94 https://www.cnki.com.cn/Article/CJFDTOTAL-XJKB201302005.htm王濤, 位建強, 張釗琦, 等. 片形FeSiAl磁粉復合材料的雷達波吸收機理. 中國材料進展, 2013, 32(2): 94 https://www.cnki.com.cn/Article/CJFDTOTAL-XJKB201302005.htm [13] Zhang Y Q, Ding Y G, Yin S Y, et al. Electrical and magnetic characteristic study of FeSiAl microwave attenuating coatings. Vac Electron, 2006(6): 39 doi: 10.3969/j.issn.1002-8935.2006.06.012張永清, 丁耀根, 陰生毅, 等. FeSiAl微波衰減涂層電磁特性分析. 真空電子技術, 2006(6): 39 doi: 10.3969/j.issn.1002-8935.2006.06.012 [14] Sun J, Xu H L, Shen Y, et al. Enhanced microwave absorption properties of the milled flake-shaped FeSiAl/graphite composites. J Alloys Compd, 2013, 548: 18 doi: 10.1016/j.jallcom.2012.08.114 [15] Zhao K H, Chen X M. Electromagnetism. 4th Ed. Beijing: Higher Education Press, 2018趙凱華, 陳熙謀. 電磁學. 4版. 北京: 高等教育出版社, 2018 [16] Wang Q, Wang C J, Pang X J, et al. Control of solidified structures of Al-Si hypereutectic alloy by using intense magnetic fields. Chin J Mater Res, 2004, 18(6): 568 doi: 10.3321/j.issn:1005-3093.2004.06.002王強, 王春江, 龐雪君, 等. 利用強磁場控制過共晶鋁硅合金的凝固組織. 材料研究學報, 2004, 18(6): 568 doi: 10.3321/j.issn:1005-3093.2004.06.002 [17] Goc K, Gaska K, Klimczyk K, et al. Influence of magnetic field-aided filler orientation on structure and transport properties of ferrite filled composites. J Magn Magn Mater, 2016, 419: 345 doi: 10.1016/j.jmmm.2016.06.046 [18] Lee J Y, Kumar V, Lee D J. Compressive properties of magnetorheological elastomer with different magnetic fields and types of filler. Polym Adv Technol, 2019, 30(4): 1106 doi: 10.1002/pat.4544 [19] Zhu Y S, Umehara N, Ido Y, et al. Computer simulation of structures and distributions of particles in MAGIC fluid. J Magn Magn Mater, 2006, 302(1): 96 doi: 10.1016/j.jmmm.2005.08.015 [20] Sun X, Zhang L B, Sun H K, et al. Research progress and application field of magnetic particle motion mechanism in magnetic field. Mine Eng, 2017, 5(4): 114孫欣, 章禮斌, 孫浩楷, 等. 磁場中磁性顆粒運動機理的研究進展及應用領域. 礦山工程, 2017, 5(4): 114 [21] Adams J D, Kim U, Soh H T. Multitarget magnetic activated cell sorter. Proc Natl Acad Sci USA, 2008, 105(47): 18165 doi: 10.1073/pnas.0809795105 [22] Tokura S, Hara M, Kawaguchi N, et al. The behavior of nano-and micro-magnetic particles under a high magnetic field using a superconducting magnet. IEEE Trans Appl Supercond, 2014, 24(3): 3700305 http://ieeexplore.ieee.org/document/6650034/ [23] Rodríguez-Arco L, López-López M T, Durán J D G, et al. Stability and magnetorheological behaviour of magnetic fluids based on ionic liquids. J Phys Condens Matter, 2011, 23(45): 455101 doi: 10.1088/0953-8984/23/45/455101 [24] Nagato K, Oshima T, Kuwayama A, et al. Microscopic observation of behavior of magnetic particle clusters during torque transfer between magnetic poles. J Appl Phys, 2015, 117(17): 17C729 doi: 10.1063/1.4916113 [25] Ando T, Hirota N, Wada H. Numerical simulation of chainlike cluster movement of feeble magnetic particles by induced magnetic dipole moment under high magnetic fields. Sci Technol Adv Mater, 2009, 10(1): 014609 doi: 10.1088/1468-6996/10/1/014609 [26] Chu H R, Chen P, Yu Q, et al. Preparation and microwave absorption properties of FeCo/graphene. Chin J Mater Res, 2018, 32(3): 161 https://www.cnki.com.cn/Article/CJFDTOTAL-CYJB201803001.htm褚海榮, 陳平, 于祺, 等. FeCo/石墨烯的制備和吸波性能. 材料研究學報, 2018, 32(3): 161 https://www.cnki.com.cn/Article/CJFDTOTAL-CYJB201803001.htm [27] Wang T, Zhang J M, Wang P, et al. The absorption mechanism of radar absorber and performance evaluation criterion of absorbent. J Magn Mater Devices, 2016, 47(6): 7 doi: 10.3969/j.issn.1001-3830.2016.06.002王濤, 張峻銘, 王鵬, 等. 吸波材料吸波機制及吸波劑性能優劣評價方法. 磁性材料及器件, 2016, 47(6): 7 doi: 10.3969/j.issn.1001-3830.2016.06.002 [28] Liu X W, Chen X, Wang X J, et al. Recent progress in magnetic absorbing materials. Surf Technol, 2013, 42(4): 104 https://www.cnki.com.cn/Article/CJFDTOTAL-BMJS201304027.htm劉祥萱, 陳鑫, 王煊軍, 等. 磁性吸波材料的研究進展. 表面技術, 2013, 42(4): 104 https://www.cnki.com.cn/Article/CJFDTOTAL-BMJS201304027.htm -