<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

純電動車用鋰離子電池發展現狀與研究進展

安富強 趙洪量 程志 邱繼一承 周偉男 李平

安富強, 趙洪量, 程志, 邱繼一承, 周偉男, 李平. 純電動車用鋰離子電池發展現狀與研究進展[J]. 工程科學學報, 2019, 41(1): 22-42. doi: 10.13374/j.issn2095-9389.2019.01.003
引用本文: 安富強, 趙洪量, 程志, 邱繼一承, 周偉男, 李平. 純電動車用鋰離子電池發展現狀與研究進展[J]. 工程科學學報, 2019, 41(1): 22-42. doi: 10.13374/j.issn2095-9389.2019.01.003
AN Fu-qiang, ZHAO Hong-liang, CHENG Zhi, QIU JI Yi-cheng, ZHOU Wei-nan, LI Ping. Development status and research progress of power battery for pure electric vehicles[J]. Chinese Journal of Engineering, 2019, 41(1): 22-42. doi: 10.13374/j.issn2095-9389.2019.01.003
Citation: AN Fu-qiang, ZHAO Hong-liang, CHENG Zhi, QIU JI Yi-cheng, ZHOU Wei-nan, LI Ping. Development status and research progress of power battery for pure electric vehicles[J]. Chinese Journal of Engineering, 2019, 41(1): 22-42. doi: 10.13374/j.issn2095-9389.2019.01.003

純電動車用鋰離子電池發展現狀與研究進展

doi: 10.13374/j.issn2095-9389.2019.01.003
基金項目: 

中國博士后科學基金資助項目 2018M631335

中央高校基本科研資助項目 FRF-TP-18-024A1

詳細信息
    通訊作者:

    李平, E-mail: liping@ustb.edu.cn

  • 中圖分類號: U469.7

Development status and research progress of power battery for pure electric vehicles

More Information
  • 摘要: 現階段, 鋰離子電池已經成為電動汽車最重要的動力源, 其發展經歷了三代技術的發展(鈷酸鋰正極為第一代, 錳酸鋰和磷酸鐵鋰為第二代, 三元技術為第三代).隨著正負極材料向著更高克容量的方向發展和安全性技術的日漸成熟、完善, 更高能量密度的電芯技術正在從實驗室走向產業化.本文從鋰離子電池產學研結合的角度, 從電池正負極材料, 電池設計和生產工藝來分析動力電池行業最新動態和科學研究的前沿成果, 并結合市場需求與政策導向來闡述動力電池的發展方向和技術路線的實現途徑.

     

  • 圖  1  不同類型電池的比功率/比能量曲線圖[1]

    Figure  1.  Ragone plot of different battery chemistries for electric vehicles

    圖  2  電動車用動力電池技術指標發展目標

    Figure  2.  Development goal of power battery technical indicators

    圖  3  電池企業與整車廠的供應關系

    Figure  3.  Supply relation between automakers and battery companies

    圖  4  動力電池發展規劃. (a) 不同國家純電動車動力電池發展規劃; (b) 我國動力電池相關技術指標規劃情況

    Figure  4.  Development planning for power batteries: (a) development planning in various countries; (b) development planning in China regarding critical technical indicators of power batteries

    圖  5  不同正極材料的性能特點. (a) 典型放電曲線圖[3]; (b) 材料性能曲線比較圖

    Figure  5.  Features of various positive materials: (a) discharge profile[3]; (b) performance comparison

    圖  6  不同正極材料電池的裝機量. (a) 市場總裝機量;(b) 2017年國內銷量前十的企業裝機量

    Figure  6.  LIBs installed capacities for electric vehicles using various positive materials: (a) overall installed capacity; (b) installed capacity of the top ten enterprises, based on 2017 sales

    圖  7  三元材料的特點. (a)三元正極材料晶體結構[7];(b)不同鎳含量三元材料的熱穩定性和容量的對比[10]

    Figure  7.  Features of LiNixCoyMzO2(M=Mn/Al; x+y+z=1): (a) crystal structure[7]; (b) thermal stability and discharging capacity with various Ni contents[10]

    圖  8  三元材料NCM /NCA暴露在空氣中后表面結構變化[13]

    Figure  8.  Surface change of NCM /NCA after exposure to air[13]

    圖  9  Li[(Ni0.8Co0.1Mn0.1)0.8(Ni0.5Mn0.5)0.2]O2和LiNi0.8Co0.1Mn0.1O2循環性能(a)和放熱反應(b)對比[29]

    Figure  9.  Cyclic performance (a) and heat flow (b) of Li[(Ni0.8Co0.1Mn0.1)0.8(Ni0.5Mn0.5)0.2] O2 and LiNi0.8Co0.1Mn0.1O2[29]

    圖  10  Li1.2(Mn0.62Ni0.38)0.8O2材料形貌圖[30]

    Figure  10.  Morphology of Li1.2(Mn0.62Ni0.38)0.8O2[30]

    圖  11  單晶與多晶的三元材料顆粒的對比圖. (a) 單晶材料(A, a)與多晶材料(B, b)的掃描電鏡對比圖[30];(b) 電化學和界面上的穩定性對比的示意圖[32]

    Figure  11.  Comparison between polycrystalline and single crystalline NCM cathodes: (a) SEM morphologies of single-crystalline (A, a) and polycrystalline (B, b) NCM cathode[30]; (b) electrochemical and interfacial stability of polycrystalline and single-crystalline cathodes[32]

    圖  12  不同形貌結構石墨材料的金屬鋰沉積過程示意圖[34]

    Figure  12.  Illustration of different types of graphite with li-metal deposition[34]

    圖  13  高能球磨方法制備的LixSi材料及其穩定性表征[43]

    Figure  13.  Schematic of the synthesis of LixSi using high-energy ball milling and materials stability characterization[43]

    圖  14  常見正極材料在掃描電鏡下的微觀形貌[48]. (a) Li[Mn0.42Ni0.42Co0.16]O2;(b) Li(Ni0.8Co0.15Al0.05)O2

    Figure  14.  SEM images showing microstructures of different electrode materials[48]: (a) Li[Mn0.42Ni0.42Co0.16]O2; (b) Li(Ni0.8Co0.15Al0.05)O2

    圖  15  電極層中電流傳輸的離子通路和電子通路[49]

    Figure  15.  Ionic and electronic pathways of current transmission in an electrode[49]

    圖  16  電子電導率和離子電導率隨孔隙率的變化關系[50]

    Figure  16.  Relationship between porosity of electrode and electronic/ionic conductivity[50]

    圖  17  動力電池的三種封裝形狀[56]. (a) 圓柱卷繞式;(b) 軟包疊片式;(c) 方形卷繞式

    Figure  17.  Three package structures of power batteries: (a) cylindrical type; (b) laminated type; (c) prismatic type

    圖  18  軟包疊片式電池的兩種極耳布置方式. (a) 同側布置;(b) 對側布置(單位:mm)

    Figure  18.  Two tab layouts of laminated power batteries: (a) the same side; (b) the opposite side (unit: mm)

    圖  19  鋰離子電池生產工藝流程圖(以軟包電池為例)

    Figure  19.  Process flow diagram of lithium ion batteries production (pouch cell)

    圖  20  活性顆粒表面導電網絡分布[67]. (a) 有無干法混料的導電劑分布示意圖;(b) 掃描電子顯微鏡下顆粒表面導電劑分布圖

    Figure  20.  Conductive network on the surface of active material particles[67]: (a) diagram of conductive agent coating on particles with and without dry mixing; (b) diagram of conductive agent coating on particles with dry mixing, characterized by SEM

    圖  21  狹縫擠壓式涂布示意圖[71]

    Figure  21.  Schematics of slot-die coating[71]

    表  1  全球動力電池企業發展現狀(數據截止2017年)

    Table  1.   Development status of global power battery enterprises (up to 2017)

    銷量排名 動力電池企業 國家 電池銷量/(GW·h) 產品類型 能量密度/(W·h·kg-1) 主要客戶
    1 寧德時代 中國 12 方型 200~250 寶馬,奔馳,大眾
    2 松下 日本 10 圓柱 250~340 特斯拉
    3 比亞迪 中國 7.2 方型 150~200 比亞迪
    4 沃特瑪 中國 5.5 圓柱 145 奇瑞,金龍
    5 LG化學 韓國 4.5 軟包 240 通用,現代,大眾
    6 國軒高科 中國 3.2 方型 150~200 北汽,江鈴,長安
    7 三星SDI 韓國 2.8 方型 250 寶馬
    8 北京國能 中國 1.9 軟包 160~200 金龍,安凱
    9 比克 中國 1.6 圓柱 220~232 眾泰,一汽,江淮
    10 孚能科技 中國 1.3 軟包 220 北汽,長安
    下載: 導出CSV

    表  2  不同正極材料在電動汽車上的典型應用

    Table  2.   Application of positive materials in batteries for electric vehicles

    汽車廠商 正極材料 電池供應商 電池總容量/(kW·h) 續航里程/km
    特斯拉Model S NCA 松下 85.0 480
    現代Kona NCM LG化學 64.0 470
    寶馬i3 NCM 三星SDI 33.2 277
    比亞迪e6 LFP 比亞迪 60.0 300
    日產Leaf LMO+NCA AESC 24.0 160
    下載: 導出CSV

    表  3  目前商業化負極材料性能分析及應用情況

    Table  3.   Performance analysis and application of commercialized anode materials

    材料 克容量/(mA·h·g-1) 首次效率/% 壓實密度/(g·m-3) 工作電壓/V 循環壽命(次) 安全性 倍率性能 應用方向
    天然石墨 340~370 90~93 1.6~1.85 0.2 >1000 一般 數碼/動力
    人造石墨 310~370 90~96 1.5~1.8 0.2 >1500 良好 良好 數碼/動力
    中間相碳微球 280~340 90~94 1.5~1.7 0.2 >1000 良好 優秀 動力
    軟碳 250~300 80~85 1.3~1.5 ~0.5 >1000 良好 優秀 動力/儲能
    硬碳 250~400 80~85 1.3~1.5 ~0.5 >1000 良好 優秀 動力/儲能
    鈦酸鋰 160~170 98~99 1.8~2.3 1.55 >30000 優秀 優秀 動力/儲能
    硅/氧化硅 1000~4000 60~90 0.9~1.1 0.3~0.5 < 1000 一般 一般 動力
    下載: 導出CSV

    表  4  硅基材料制備工藝對比

    Table  4.   Comparison of various synthetic procedures for silicon-based materials

    制備工藝 優勢 劣勢
    高溫熱解法 1.工藝簡單,生產難度小
    2.產品一致性較好
    1.顆粒不易分散,碳層包覆一致性不高
    2.高溫處理過程顆粒易團聚,影響性能
    機械球磨法 1.可調控粒徑分布
    2.生產成本較低
    1.需要根據硅與石墨的親和性選擇合適研磨條件
    2.產生較多微晶顆粒,易引發副反應
    化學氣相沉積法 1.碳包覆層均勻性好
    2.對材料性能提升明顯
    1.工藝設備投入復雜,成本高
    2.需要與其他方法組合使用
    下載: 導出CSV

    表  5  硅基材料對比

    Table  5.   Performance comparison of different silicon-based materials

    硅基材料 優勢 劣勢
    氧化硅 1、可逆容量高,體積膨脹低
    2、循環和倍率性能相比硅負極較好
    1、首次效率低(< 80%)
    2、制備工藝復雜,成本較高
    1、克容量發揮高,首次效率更高
    2、工藝成熟,原材料便宜
    1、體積膨脹率大,循環性能差
    2、熱安全性差
    硅合金 1、可逆容量高,體積膨脹低
    2、體積和質量能量密度較低
    1、工藝制備復雜,成本高
    2、首次效率和循環性能有待提高
    下載: 導出CSV

    表  6  不同商業化的圓柱型動力電池型號及極耳設計方式

    Table  6.   Various tab layouts of cylindrical power batteries

    表  7  高比能量電池設計思路

    Table  7.   Design concepts of high-energy cells

    電池設計 途徑 實現方法
    高克容量 高鎳三元材料+硅碳材料
    材料配方 高主材占比 高導電性導電劑、高黏度黏結劑
    微觀電極 高電壓 單晶材料、特殊電解液
    面密度 提高料區面密度 提高料區涂覆量,降低箔材面密度
    孔隙率 高壓實 單晶或粒徑分布合理范圍的三元材料
    構型 極片組裝和封裝方式 軟包疊片式
    宏觀結構 極片總面積 單位面積/電極數量 增加電極面積、卷繞圈數或疊片數
    比例 箔材、隔膜和極耳 箔材和隔膜減薄,極耳結構優化
    下載: 導出CSV

    表  8  不同廠商的高比能量電池研究現狀

    Table  8.   Current research on high-energy cells by various battery manufacturers

    廠商 構型 容量/(A·h) 能量密度/(W·h·kg-1) 體系 應用
    松下 圓柱 4.1 242 NCA-硅碳 Model 3
    比克 圓柱 2.9 220 811-石墨 云度π1、π3
    CATL 方形 51 220 622-石墨 蔚來ES8
    LG 軟包 56.7 212 532(4.3V)-石墨 通用
    下載: 導出CSV

    表  9  動力電池生產企業采用的涂布技術的優缺點

    Table  9.   Advantages and disadvantages of coatings adopted by mainstream LIB companies

    涂布技術 優點 缺點
    刮刀轉移式涂布 設備成本低
    維護成本很低
    涂布速度慢
    膜厚難以控制
    涂布缺陷多
    黏度范圍窄涂布速度高
    狹縫擠壓式涂布 膜厚一致性好
    黏度范圍廣
    涂布缺陷少
    漿料利用率高
    設備成本高
    安裝和操作要求高
    模頭維護成本高
    下載: 導出CSV
    久色视频
  • [1] An F Q, Qi L, Wang J, et al. Studies on power Li-ion secondary battery system for EV and HEV. Acta Sci Nat Univ Pek, 2011, 47(1): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ201101002.htm

    安富強, 其魯, 王劍, 等. 電動汽車用動力鋰離子二次電池系統性能的研究. 北京大學學報(自然科學版), 2011, 47(1): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ201101002.htm
    [2] Gallagher K G, Trask S E, Bauer C, et al. Optimizing areal capacities through understanding the limitations of lithium-ion electrodes. J Electrochem Soc, 2016, 163(2): A138 doi: 10.1149/2.0321602jes
    [3] Nitta N, Wu F X, Lee J T, et al. Li-ion battery materials: present and future. Mater Today, 2015, 18(5): 252 doi: 10.1016/j.mattod.2014.10.040
    [4] Mizushima K, Jones P C, Wiseman P J, et al. LixCoO2 (0 < x < -1): a new cathode material for batteries of high energy density. Solid State Ionics, 1980, 15(6): 783
    [5] Ohzuku T, Ueda A, Nagayama M. Electrochemistry and structural chemistry of LiNiO2 (R3m) for 4 volt secondary lithium cells. J Electrochem Soc, 1993, 140(7): 1862 doi: 10.1149/1.2220730
    [6] Bruce P G, Robert Armstrong A, Gitzendanner R L. New intercalation compounds for lithium batteries: layered LiMnO2. J Mater Chem, 1999, 9(1): 193 doi: 10.1039/a803938k
    [7] Meng Y S, Arroyo-de Dompablo M E. Recent advances in first principles computational research of cathode materials for lithium-ion batteries. Acc Chem Res, 2013, 46(5): 1171 doi: 10.1021/ar2002396
    [8] Liu Z L, Yu A S, Lee J Y. Synthesis and characterization of LiNi1-x-yCoxMnyO2 as the cathode materials of secondary lithium batteries. J Power Sources, 1999, 81-82: 416 doi: 10.1016/S0378-7753(99)00221-9
    [9] Shao Y J, Huang B, Liu Q B, et al. Preparation and modification of Ni-Co-Mn ternary cathode materials. Prog Chem, 2018, 30(4): 410 https://www.cnki.com.cn/Article/CJFDTOTAL-HXJZ201804007.htm

    邵奕嘉, 黃斌, 劉全兵, 等. 三元鎳鈷錳正極材料的制備及改性. 化學進展, 2018, 30(4): 410 https://www.cnki.com.cn/Article/CJFDTOTAL-HXJZ201804007.htm
    [10] Noh H J, Youn S, Yoon C S, et al. Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x=1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries. J Power Sources, 2013, 233: 121
    [11] Cao Y, Yan C C, Wang Y F, et al. The technical route exploration of lithium ion battery with high safety and high energy density. Energy Stor Sci Technol, 2018, 7(3): 384 https://www.cnki.com.cn/Article/CJFDTOTAL-CNKX201803003.htm

    曹勇, 嚴長青, 王義飛, 等. 高安全高比能量動力鋰離子電池系統路線探索. 儲能科學與技術, 2018, 7(3): 384 https://www.cnki.com.cn/Article/CJFDTOTAL-CNKX201803003.htm
    [12] Liu L, Bao S S, He H, et al. Research progress of Ni-rich ternary cathode materials for lithium ion batteries. Electron Compon Mater, 2017, 36(12): 58 https://www.cnki.com.cn/Article/CJFDTOTAL-DZAL201712012.htm

    劉磊, 包珊珊, 何歡, 等. 鋰離子電池富鎳三元正極材料研究進展. 電子元件與材料, 2017, 36(12): 58 https://www.cnki.com.cn/Article/CJFDTOTAL-DZAL201712012.htm
    [13] Cho D H, Jo C H, Cho W, et al. Effect of residual lithium compounds on layer Ni-rich Li[Ni0.7Mn0.3]O2. J Electrochem Soc, 2014, 161(6): A920 doi: 10.1149/2.042406jes
    [14] Zhai Y W, Zhang J C, Zhao H, et al. Research progress of ternary layered oxide cathode materials for lithium ion batteries. J Eng Stud, 2017, 9(6): 523 https://www.cnki.com.cn/Article/CJFDTOTAL-GCKG201706001.htm

    翟彥武, 張繼成, 趙虎, 等. 鋰離子電池三元層狀氧化物正極材料的研究進展. 工程研究-跨學科視野中的工程, 2017, 9(6): 523 https://www.cnki.com.cn/Article/CJFDTOTAL-GCKG201706001.htm
    [15] Fu C Y, Zhou Z L, Liu Y H, et al. Synthesis and electrochemical properties of Mg-doped LiNi0.6Co0.2Mn0.2O2 cathode materials for Li-ion battery. J Wuhan Univ Technol-Mater Sci Ed, 2011, 26(2): 211 doi: 10.1007/s11595-011-0199-z
    [16] Ding Y H, Zhang P, Long Z L, et al. Morphology and electrochemical properties of Al doped LiNi1/3Co1/3Mn1/3O2 nanofibers prepared by electrospinning. J Alloys Compd, 2009, 487(1-2): 507 doi: 10.1016/j.jallcom.2009.08.002
    [17] Kam K C, Mehta A, Heron J T, et al. Electrochemical and physical properties of Ti-substituted layered nickel manganese cobalt oxide (NMC) cathode materials. J Electrochem Soc, 2012, 159(8): A1383 doi: 10.1149/2.060208jes
    [18] Woo S U, Park B C, Yoon C S, et al. Improvement of electrochemical performances of LiNi0.8Co0.1Mn0.1O2 cathode materials by Fluorine substitution. J Electrochem Soc, 2007, 154(7): A649 doi: 10.1149/1.2735916
    [19] Yan J, Yuan W, Tang Z Y, et al. Synthesis and electrochemical performance of Li3V2(P04)3-xClx/C cathode materials for lithium-ion batteries. J Power Sources, 2012, 209: 251 doi: 10.1016/j.jpowsour.2012.02.110
    [20] Huang Y D, Jiang R R, Jia D Z, et al. Preparation, microstructure and electrochemical performance of nanoparticles LiMn2O3.9Br0.1. Mater Lett, 2011, 65(23-24): 3486 doi: 10.1016/j.matlet.2011.07.091
    [21] Woo S W, Myung S T, Bang H, et al. Improvement of electrochemical and thermal properties of Li[Ni0.8Co0.1Mn0.1]O2 positive electrode materials by multiple metal (Al, Mg) substitution. Electrochim Acta, 2009, 54(15): 3851 doi: 10.1016/j.electacta.2009.01.048
    [22] Shin H S, Shin D, Sun Y K. Improvement of electrochemical properties of Li[Ni0.4Co0.2Mn(0.4-x)Mgx]O2-yFy cathode materials at high voltage region. Electrochim Acta, 2006, 52(4): 1477 doi: 10.1016/j.electacta.2006.02.048
    [23] Dong M X, Wang Z X, Li H K, et al. Metallurgy inspired formation of homogeneous Al2O3 coating layer to improve the electrochemical properties of LiNi0.8Co0.1Mn0.1O2 Cathode Material. ACS Sustainable Chem Eng, 2017, 5(11): 10199 doi: 10.1021/acssuschemeng.7b02178
    [24] Cho J, Kim T J, Kim Y J, et al. High-performance ZrO2-coated LiNiO2 cathode material. Electrochem Solid-State Lett, 2001, 4(10): A159 doi: 10.1149/1.1398556
    [25] Kweon H J, Kim S J, Park D G. Modification of LixNiyCoyO2 by applying a surface coating of MgO. J Power Sources, 2000, 88(2): 255 doi: 10.1016/S0378-7753(00)00368-2
    [26] Ying J R, Wan C R, Jiang C Y. Surface treatment of LiNi0.8Co0.2O2 cathode material for lithium secondary batteries. J Power Sources, 2001, 102(1-2): 162 doi: 10.1016/S0378-7753(01)00795-9
    [27] Zhang J C, Zhang H, Gao R, et al. New insights into the modification mechanism of Li-rich Li1.2Mn0.6Ni0.2O2 coated by Li2ZrO3. Phys Chem Chem Phys, 2016, 18(19): 13322 doi: 10.1039/C6CP01366J
    [28] Liu S J, Wu H, Huang L, et al. Synthesis of Li2Si2O5-coated LiNi0.6Co0.2Mn0.2O2 cathode materials with enhanced high-voltage electrochemical properties for lithium-ion batteries. J Alloys Compd, 2016, 674: 447 doi: 10.1016/j.jallcom.2016.03.060
    [29] Sun Y K, Myung S T, Kim M H, et al. Synthesis and characterization of Li[(Ni0.8Co0.1Mn0.1)0.8(Ni0.5Mn0.5)0.2]O2 with the microscale core-shell structure as the positive electrode material for lithium batteries. J Am Chem Soc, 2005, 127(38): 13411 doi: 10.1021/ja053675g
    [30] Koenig Jr G M, Belharouak I, Deng H X, et al. Composition-tailored synthesis of gradient transition metal precursor particles for lithium-ion battery cathode materials. Chem Mater, 2011, 23(7): 1954 doi: 10.1021/cm200058c
    [31] Xiao J W, Liu L B, Fu Z W, et al. Research progress in the single crystal LiNixCoyMn1-x-yO2 ternary cathode materials. Chin Battery Ind, 2017, 21(2): 51 doi: 10.3969/j.issn.1008-7923.2017.02.013

    肖建偉, 劉良彬, 符澤衛, 等. 單晶LiNixCOyMn1-x-yO2三元正極材料研究進展. 電池工業, 2017, 21(2): 51 doi: 10.3969/j.issn.1008-7923.2017.02.013
    [32] Li J, Cameron A R, Li H Y, et al. Comparison of single crystal and polycrystalline LiNi0.5Mn0.3Co0.2O2 positive electrode materials for high voltage Li-ion cells. J Electrochem Soc, 2017, 164(7): A1534 doi: 10.1149/2.0991707jes
    [33] Kim J, Lee H, Cha H, et al. Prospect and reality of Ni-rich cathode for commercialization. Adv Energy Mater, 2017, 8(6): 1702028 doi: 10.1002/aenm.201702028
    [34] Kim Y. Lithium nickel cobalt manganese oxide synthesized using alkali chloride flux: morphology and performance as a cathode material for lithium ion batteries. ACS Appl Mater Interfaces, 2012, 4(5): 2329 doi: 10.1021/am300386j
    [35] Sun Y M, Zheng G Y, Seh Z W, et al. Graphite-encapsulated Li-metal hybrid anodes for high-capacity Li batteries. Chem, 2016, 1(2): 287 doi: 10.1016/j.chempr.2016.07.009
    [36] Dash R, Pannala S. Theoretical limits of energy density in silicon-carbon composite anode based lithium ion batteries. Sci Rep, 2016, 6: 27449 doi: 10.1038/srep27449
    [37] Jo Y N, Kim Y, Kim J S, et al. Si-graphite composites as anode materials for lithium secondary batteries. J Power Sources, 2010, 195(18): 6031 doi: 10.1016/j.jpowsour.2010.03.008
    [38] Lee J H, Kim W J, Kim J Y, et al. Spherical silicon/graphite/carbon composites as anode material for lithium-ion batteries. J Power Sources, 2008, 176(1): 353 doi: 10.1016/j.jpowsour.2007.09.119
    [39] Ma C L, Ma C, Wang J Z, et al. Exfoliated graphite as a flexible and conductive support for Si-based Li-ion battery anodes. Carbon, 2014, 72: 38 doi: 10.1016/j.carbon.2014.01.027
    [40] Sun Q, Zhang B, Fu Z W. Lithium electrochemistry of SiO2 thin film electrode for lithium-ion batteries. Appl Surf Sci, 2008, 254(13): 3774 doi: 10.1016/j.apsusc.2007.11.058
    [41] Philippe B, Dedryvère R, Allouche J, et al. Nanosilicon electrodes for lithium-ion batteries: interfacial mechanisms studied by hard and soft X-ray photoelectron spectroscopy. Chem Mater, 2012, 24(6): 1107 doi: 10.1021/cm2034195
    [42] Kim H J, Choi S, Lee S J, et al. Controlled prelithiation of silicon monoxide for high performance lithium-ion rechargeable full cells. Nano Lett, 2016, 16(1): 282 doi: 10.1021/acs.nanolett.5b03776
    [43] Li X M, Kersey-Bronec F E, Ke J, et al. Study of lithium silicide nanoparticles as anode materials for advanced lithium ion batteries. ACS Appl Mater Interfaces, 2017, 9(19): 16071 doi: 10.1021/acsami.6b16773
    [44] Zhao J, Lu Z D, Wang H T, et al. Artificial solid electrolyte interphase-protected LixSi nanoparticles: an efficient and stable prelithiation reagent for lithium-ion batteries. J Am Chem Soc, 2015, 137(26): 8372 doi: 10.1021/jacs.5b04526
    [45] Zhao H, Wang Z H, Lu P, et al. Toward practical application of functional conductive polymer binder for a high-energy lithium-ion battery design. Nano Lett, 2014, 14(11): 6704 doi: 10.1021/nl503490h
    [46] Su H P, Barragan A A, Geng L X, et al. Colloidal synthesis of silicon-carbon composite materials for lithium-ion batteries. Angew Chem, 2017, 129(36): 10920 doi: 10.1002/ange.201705200
    [47] Palomino J, Varshney D, Weiner B R, et al. Study of the structural changes undergone by hybrid nanostructured Si-CNTs employed as an anode material in a rechargeable lithium-ion battery. J Phys Chem C, 2015, 119(36): 21125 doi: 10.1021/acs.jpcc.5b01178
    [48] Wang Y D, Jiang J W, Dahn J R. The reactivity of delithiated Li(Ni1/3Co1/3Mn1/3)O2, Li(Ni0.8Co0.15Al0.05)O2 or LiCoO2 with non-aqueous electrolyte. Electrochem Commun, 2007, 9(10): 2534 doi: 10.1016/j.elecom.2007.07.033
    [49] Wang Z H. Modeling of Porous Electrode Using Stacked-Agglomerates[Dissertation]. Beijing: Tsinghua University, 2017

    王子珩. 團聚體堆疊型多孔電極模型構建與應用[學位論文]. 北京: 清華大學, 2017
    [50] Chen Y H, Wang C W, Zhang X, et al. Porous cathode optimization for lithium cells: ionic and electronic conductivity, capacity, and selection of materials. J Power Sources, 2010, 195(9): 2851 doi: 10.1016/j.jpowsour.2009.11.044
    [51] Yu S, Chung Y, Song M S, et al. Investigation of design parameter effects on high current performance of lithium-ion cells with LiFePO4/graphite electrodes. J Appl Electrochem, 2012, 42(6): 443 doi: 10.1007/s10800-012-0418-0
    [52] Appiah W A, Park J, Song S, et al. Design optimization of LiNi0.6Co0.2Mn0.2O2/graphite lithium-ion cells based on simulation and experimental data. J Power Sources, 2016, 319: 147 doi: 10.1016/j.jpowsour.2016.04.052
    [53] De S, Northrop P W C, Ramadesigan V, et al. Model-based simultaneous optimization of multiple design parameters for lithium-ion batteries for maximization of energy density. J Power Sources, 2013, 227: 161 doi: 10.1016/j.jpowsour.2012.11.035
    [54] Xue N S, Du W B, Gupta A, et al. Optimization of a single lithium-ion battery cell with a gradient-based algorithm. J Electrochem Soc, 2013, 160(8): A1071 doi: 10.1149/2.036308jes
    [55] Golmon S, Maute K, Dunn M L. Multiscale design optimization of lithium ion batteries using adjoint sensitivity analysis. Int J Numer Methods Eng, 2012, 92(5): 475 doi: 10.1002/nme.4347
    [56] Meng F W. Studies on the Design and Performance of Lithium Ion Battery[Dissertation]. Beijing: Beijing Institute of Technology, 2015

    孟凡偉. 鋰離子電池的相關設計與性能研究[學位論文]. 北京: 北京理工大學, 2015
    [57] Li P, An F Q, Zhang J B, et al. Temperature sensitivity of lithium-ion battery: a review. J Autom Saf Energy, 2014, 5(3): 224 doi: 10.3969/j.issn.1674-8484.2014.03.002

    李平, 安富強, 張劍波, 等. 電動汽車用鋰離子電池的溫度敏感性研究綜述. 汽車安全與節能學報, 2014, 5(3): 224 doi: 10.3969/j.issn.1674-8484.2014.03.002
    [58] Zhang J B, Li Z, Wu B. The Structure Design Theory and Application of Lithium-Ion Battery. Beijing: Science and Technology of China Press, 2016

    張劍波, 李哲, 吳彬. 鋰離子電池結構設計理論與應用. 北京: 中國科學技術出版社, 2016
    [59] Al-Hallaj S, Selman J R. Thermal modeling of secondary lithium batteries for electric vehicle/hybrid electric vehicle applications. J Power Sources, 2002, 110(2): 341 doi: 10.1016/S0378-7753(02)00196-9
    [60] Chen S C, Wang Y Y, Wan C C. Thermal analysis of spirally wound lithium batteries. J Electrochem Soc, 2006, 153(4): A637 doi: 10.1149/1.2168051
    [61] Kim U S, Shin C B, Kim C S. Effect of electrode configuration on the thermal behavior of a lithium-polymer battery. J Power Sources, 2008, 180(2): 909 doi: 10.1016/j.jpowsour.2007.09.054
    [62] Wu B. Thermal Design Methodology for Traction Lithium-Ion Batteries [Dissertation]. Beijing: Tsinghua University, 2015

    吳彬. 鋰離子動力電池熱設計方法研究[學位論文]. 北京: 清華大學, 2015
    [63] Inui Y, Kobayashi Y, Watanabe Y, et al. Simulation of temperature distribution in cylindrical and prismatic lithium ion secondary batteries. Energy Convers Manage, 2007, 48(7): 2103 doi: 10.1016/j.enconman.2006.12.012
    [64] Zhao W, Luo G, Wang C Y. Effect of tab design on large-format Li-ion cell performance. J Power Sources, 2014, 257: 70 doi: 10.1016/j.jpowsour.2013.12.146
    [65] Lee K J, Smith K, Pesaran A, et al. Three dimensional thermal-, electrical-, and electrochemical-coupled model for cylindrical wound large format lithium-ion batteries. J Power Sources, 2013, 241: 20 doi: 10.1016/j.jpowsour.2013.03.007
    [66] Kim K M, Jeon W S, Chung I J, et al. Effect of mixing sequences on the electrode characteristics of lithium-ion rechargeable batteries. J Power Sources, 1999, 83(1-2): 108 doi: 10.1016/S0378-7753(99)00281-5
    [67] Bauer W, N?tzel D, Wenzel V, et al. Influence of dry mixing and distribution of conductive additives in cathodes for lithium ion batteries. J Power Sources, 2015, 288: 359 doi: 10.1016/j.jpowsour.2015.04.081
    [68] Bockholt H, Haselrieder W, Kwade A. Intensive powder mixing for dry dispersing of carbon black and its relevance for lithium-ion battery cathodes. PowderTechnol, 2016, 297: 266 http://www.sciencedirect.com/science/article/pii/S003259101630170X
    [69] Qian L, Zhu D, Rao M M, et al. The study of Li-ion battery cathode dispersion technology. Battery Bimonthly, 2016, 46(2): 95 doi: 10.3969/j.issn.1001-1579.2016.02.010

    錢龍, 朱丹, 饒睦敏, 等. 鋰離子電池負極分散工藝研究. 電池, 2016, 46(2): 95 doi: 10.3969/j.issn.1001-1579.2016.02.010
    [70] Westphal B G, Mainusch N, Meyer C, et al. Influence of high intensive dry mixing and calendering on relative electrode resistivity determinedvia an advanced two point approach. J Energy Storage, 2017, 11: 76 doi: 10.1016/j.est.2017.02.001
    [71] Jin G L, Ahn W G, Kim S J, et al. Effect of shim configuration on internal die flows for non-Newtonian coating liquids in slot coating process. Korea-Australia Rheology J, 2016, 28(2): 159 doi: 10.1007/s13367-016-0015-6
  • 加載中
圖(21) / 表(9)
計量
  • 文章訪問數:  3795
  • HTML全文瀏覽量:  1253
  • PDF下載量:  512
  • 被引次數: 0
出版歷程
  • 收稿日期:  2018-05-29
  • 刊出日期:  2019-01-01

目錄

    /

    返回文章
    返回