<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

鉻污染毒性土壤清潔修復研究進展與綜合評價

劉仕業 岳昌盛 彭犇 邱桂博 郭敏 張梅

劉仕業, 岳昌盛, 彭犇, 邱桂博, 郭敏, 張梅. 鉻污染毒性土壤清潔修復研究進展與綜合評價[J]. 工程科學學報, 2018, 40(11): 1275-1287. doi: 10.13374/j.issn2095-9389.2018.11.001
引用本文: 劉仕業, 岳昌盛, 彭犇, 邱桂博, 郭敏, 張梅. 鉻污染毒性土壤清潔修復研究進展與綜合評價[J]. 工程科學學報, 2018, 40(11): 1275-1287. doi: 10.13374/j.issn2095-9389.2018.11.001
LIU Shi-ye, YUE Chang-sheng, PENG Ben, QIU Gui-bo, GUO Min, ZHANG Mei. Research progress on remediation technologies of chromium-contaminated soil: a review[J]. Chinese Journal of Engineering, 2018, 40(11): 1275-1287. doi: 10.13374/j.issn2095-9389.2018.11.001
Citation: LIU Shi-ye, YUE Chang-sheng, PENG Ben, QIU Gui-bo, GUO Min, ZHANG Mei. Research progress on remediation technologies of chromium-contaminated soil: a review[J]. Chinese Journal of Engineering, 2018, 40(11): 1275-1287. doi: 10.13374/j.issn2095-9389.2018.11.001

鉻污染毒性土壤清潔修復研究進展與綜合評價

doi: 10.13374/j.issn2095-9389.2018.11.001
基金項目: 

國家自然科學基金資助項目(51372019,51572020)

鋼鐵工業環境保護國家重點實驗室開放基金資助項目

詳細信息
  • 中圖分類號: X-1;X53

Research progress on remediation technologies of chromium-contaminated soil: a review

  • 摘要: 綜述了土壤中鉻的來源,土壤中鉻的賦存形式及其提取方法,國內外鉻污染土壤修復技術研究動態,探討了鉻污染土壤修復的發展方向,并對現階段主要的修復技術,諸如客土法、稀釋法、固定化和穩定化、化學還原、土壤淋洗、電動修復、生物修復等進行了詳細介紹,進而對各種修復方法的優缺點進行了對比、歸納和評價,針對不同特點、性質的鉻污染土壤給出修復方法的建議,為清潔高效修復鉻污染土壤提供參考.

     

  • [4] Adam V, Quaranta G, Loyaux-Lawniczak S. Terrestrial and aquatic ecotoxicity assessment of Cr (VI) by the ReCiPe method calculation (LCIA):application on an old industrial contaminated site. Environ Sci Pollut Res, 2013, 20(5):3312
    [5] Rai V, Mehrotra S. Chromium-induced changes in ultramorphology and secondary metabolites of Phyllanthus amarus, Schum&Thonn.-an hepatoprotective plant. Environ Monit Assess, 2008, 147(1-3):307
    [6] Dotaniya M L, Thakur J K, Meena V D, et al. Chromium pollution:a threat to environment——a review. Agric Rev, 2014, 35(2):153
    [7] Stout M D, Herbert R A, Kissling G E, et al. Hexavalent chromium is carcinogenic to F344/N rats and B6C3F1 mice after chronic oral exposure. Environ Health Perspect, 2009, 117(5):716
    [11] Wu C L, Zhang H, He P J, et al. Thermal stabilization of chromium slag by sewage sludge:effects of sludge quantity and temperature. J Environ Sci, 2010, 22(7):1110
    [14] Mǎrcuş M I, Vlad M, Mîţiu A M. Influence of different galvanic sludge types on the extraction efficiency of chromium ions. Adv Mater Res, 2017, 1143:108
    [15] Hu L G, Cai Y, Jiang G B. Occurrence and speciation of polymeric chromium (Ⅲ), monomeric chromium (Ⅲ) and chromium (Ⅵ) in environmental samples. Chemosphere, 2016, 156:14
    [17] Tessier A, Campbell P G C, Bisson M. Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem, 1979, 51(7):844
    [18] Rauret G, López-Sánchez J F, Sahuquillo A, et al. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. J Environ Monit, 1999, 1(1):57
    [19] Kartal S, Aydin Z, Tokalioğlu S. Fractionation of metals in street sediment samples by using the BCR sequential extraction procedure and multivariate statistical elucidation of the data. J Hazard Mater, 2006, 132(1):80
    [20] Mulligan C N, Yong R N, Gibbs B F. Remediation technologies for metal-contaminated soils and groundwater:an evaluation. Eng Geol, 2001, 60(1-4):193
    [21] Allan M L, Kukacka L E. Blast furnace slag-modified grouts for in situ, stabilization of chromium-contaminated soil. Waste Manage, 1995, 15(3):193
    [22] Huang X, Zhuang R L, Muhammad F, et al. Solidification/stabilization of chromite ore processing residue using alkali-activated composite cementitious materials. Chemosphere, 2017, 168:300
    [23] Meegoda J N, Partymiller K, Richards M K, et al. Remediation of chromium-contaminated soils-pilot-scale investigation. Practice Periodical Hazard Toxic Radioactive Waste Manage, 2000, 4(1):7
    [24] Blowes D W, Ptacek C J, Jambor J L. In-situ remediation of Cr (VI)-contaminated groundwater using permeable reactive walls:laboratory studies. Environ Sci Technol, 1997, 31(12):3348
    [25] Fonseca B, Pazos M, Tavares T, et al. Removal of hexavalent chromium of contaminated soil by coupling electrokinetic remediation and permeable reactive biobarriers. Environ Sci Pollut Res, 2012, 19(5):1800
    [26] Seaman J C, Bertsch P M, Schwallie L. In situ Cr (Ⅵ) reduction within coarse-textured, oxide-coated soil and aquifer systems using Fe (Ⅱ) solutions. Environ Sci Technol, 1999, 33(6):938
    [27] Khan F A, Puts R W. In situ abiotic detoxification and immobilization of hexavalent chromium. Ground Water Monit Rem, 2003, 23(1):77
    [29] James B R. Remediation-by-reduction strategies for chromate-contaminated soils. Environ Geochem Health, 2001, 23(3):175
    [31] Xiao F, Chen D F, Luo L, et al. Time-order effects of vitamin C on hexavalent chromium-induced mitochondrial damage and DNA-protein crosslinks in cultured rat peripheral blood lymphocytes. Mol Med Rep, 2013, 8(1):53
    [33] Higgins T E, Halloran A R, Dobbins M E, et al. In situ reduction of hexavalent chromium in alkaline soils enriched with chromite ore processing residue. J Air Waste Manage Assoc, 1998, 48(11):1100
    [35] Di Palma L, Mancini D, Petrucci E. Experimental assessment of chromium mobilization from polluted soil by washing. Chem Eng Trans, 2012, 28:145
    [36] Gitipour S, Ahmadi S, Madadian E, et al. Soil washing of chromium-and cadmium-contaminated sludge using acids and ethylenediaminetetra acetic acid chelating agent. Environ Technol, 2016, 37(1):145
    [37] Wang Y, Fang Z Q, Liang B, et al. Remediation of hexavalent chromium contaminated soil by stabilized nanoscale zero-valent iron prepared from steel pickling waste liquor. Chem Eng J, 2014, 247:283
    [38] Chrysochoou M, Ferreira D R, Johnston C P. Calcium polysulfide treatment of Cr (VI)-contaminated soil. J Hazard Mater, 2010, 179(1-3):650
    [39] Paria S. Surfactant-enhanced remediation of organic contaminated soil and water. Adv Colloid Interface Sci, 2008, 138(1):24
    [41] Hong K J, Tokunaga S, Ishigami Y, et al. Extraction of heavy metals from MSW incinerator fly ash using saponins. Chemosphere, 2000, 41(3):345
    [42] Jean L, Bordas F, Gautier-Moussard C, et al. Effect of citric acid and EDTA on chromium and nickel uptake and translocation by Datura innoxia. Environ Pollut, 2008, 153(3):555
    [43] Hartley N R, Tsang D C W, Olds W E, et al. Soil washing enhanced by humic substances and biodegradable chelating agents. Soil Sediment Contam, 2014, 23(6):599
    [44] Lu P, Feng Q Y, Meng Q J, et al. Electrokinetic remediation of chromium-and cadmium-contaminated soil from abandoned industrial site. Sep Purif Technol, 2012, 98:216
    [45] Maturi K, Reddy K R, Cameselle C. Surfactant-enhanced electrokinetic remediation of mixed contamination in low permeability soil. Sep Sci Technol, 2009, 44(10):2385
    [46] Gent D B, Bricka R M, Alshawabkeh A N, et al. Bench-and field-scale evaluation of chromium and cadmium extraction by electrokinetics. J Hazard Mater, 2004, 110(1-3):53
    [47] Sanjay K, Arora A, Shekhar R, et al. Electroremediation of Cr (VI) contaminated soils:kinetics and energy efficiency. Colloids Surf A:Physicochem Eng Aspects, 2003, 222(1-3):253
    [52] Baker A J M, Brooks R R. Terrestrial higher plants which hyperaccumulate metallic elements:a review of their distribution, ecology and phytochemistry. Biorecovery, 1989, 1(2):81
    [53] Raskin I, Ensley B D. Phytoremediation of Toxic Metals:Using Plants to Clean up the Environment. New York:John Wiley&Sons, Inc, 2000
    [54] Zhang X H, Liu J, Huang H T, et al. Chromium accumulation by the hyperaccumulator plant Leersia hexandra Swartz. Chemosphere, 2007, 67(6):1138
    [59] Srivastava S, Thakur I S. Evaluation of bioremediation and detoxification potentiality of Aspergillus niger for removal of hexavalent chromium in soil microcosm. Soil Biol Biochem, 2006, 38(7):1904
    [60] Tseng J K, Bielefeldt A R. Low-temperature chromium (VI) biotransformation in soil with varying electron acceptors. J Environ Qual, 2002, 31(6):1831
    [62] Vankar P S, Bajpaia D. Phytoremediation of chrome-VI of tannery effluent by Trichoderma species. Desalination, 2008, 222(1-3):255
    [63] Wang D F, Zhang G L, Zhou L L, et al. Synthesis of a multifunctional graphene oxide-based magnetic nanocomposite for efficient removal of Cr (VI). Langmuir, 2017, 33(28):7007
    [64] Baig U, Rao R A K, Khan A A, et al. Removal of carcinogenic hexavalent chromium from aqueous solutions using newly synthesized and characterized polypyrrole-titanium (IV) phosphate nanocomposite. Chem Eng J, 2015, 280:494
  • 加載中
計量
  • 文章訪問數:  1631
  • HTML全文瀏覽量:  460
  • PDF下載量:  48
  • 被引次數: 0
出版歷程
  • 收稿日期:  2017-10-17

目錄

    /

    返回文章
    返回
    久色视频