-
摘要: 對鑄態合金進行了均勻化處理、擠壓、固溶處理和時效處理,通過分析合金的化學成分,觀察合金在不同狀態的顯微組織及析出相透射電鏡(TEM)形貌,測試合金在熱處理后的硬度和拉伸性能,研究了向7056鋁合金中加入質量分數0.2%的Sc對合金組織和性能的影響.實驗結果表明,Sc元素的加入可以明顯細化組織晶粒,鑄態晶粒由100~500 μm下降到50 μm左右;Sc元素的加入對合金的塑性有大幅度提高,時效處理后,合金的斷后伸長率從10.82%增加到了13.60%;但屈服強度卻由668 MPa下降到657 MPa.通過綜合計算晶粒大小、析出相強化等因素,詳細分析了Sc元素加入引起7056鋁合金峰時效態屈服強度下降的原因.理論計算顯示,向合金中加入質量分數0.2%的Sc元素時,峰時效處理后,合金的強度值會下降12.005 MPa,與試驗值11 MPa接近.研究得到7056鋁合金最佳的單級時效制度為120℃+16 h,峰值硬度和強度為195.2 HV和714 MPa,此時合金中主要強化相為圓盤狀和短棒狀的MgZn2相,大小約為4~6 nm,同時存在球狀的Al3Zr相,大小約為20 nm.Abstract: Al-Zn-Mg-Cu alloys are widely used due to their excellent properties. For the 7056 aluminum alloy developed on the basis of 7055 aluminum alloy, exploring its aging characteristics and the effects of rare earth elements on its microstructure and mechanical properties has a great significance to promote the use of the alloy. In this paper, the as-cast alloy is subjected to homogenization treatment, extrusion, solution treatment, and aging treatment. The effect of adding 0.2% Sc to the 7056 aluminum alloy on the microstructure and properties of the alloy was investigated by analyzing the chemical composition of the alloy, observing the microstructure of the alloy in different states, observing the precipitated phase by transmission electron microscopy (TEM) and testing the hardness and tensile properties of the alloy after heat treatment. The experimental results show that the addition of Sc significantly refines the microstructure of the grains, and the as-cast grains decrease from 100-500 μm to about 50 μm. The addition of Sc element greatly improves the plasticity of the alloy. After the aging treatment, the elongation after fracture of the alloy increased from 10.82% to 13.60%, but the yield strength reduced from 668 MPa to 657 MPa. By comprehensively calculating the grain size and precipitation phase strengthening, the reasons for the decrease of the yield strength of the peak-aged 7056 aluminum alloy were analyzed in detail. Theoretical calculations show that when 0.2% of Sc is added to the alloy, after peak aging treatment, the strength of the alloy will decrease by 12.005 MPa, which is close to the test value of 11 MPa. Through the research, the best single-stage aging system condition for the 7056 aluminum alloy was found to be 120℃+16 h, and the corresponding peak hardness and strength were 195.2 HV and 714 MPa, respectively. At this time, the main strengthening phase of the alloy was a disk-shaped and short rod-shaped MgZn2 phase, which was about 4 to 6 nm in size, and the alloy also had a spherical Al3Zr phase with a size of about 20 nm.
-
Key words:
- 7056 aluminum alloy /
- scandium /
- microstructure /
- mechanical property /
- aging
-
圖 1 兩種合金在不同狀態下顯微組織. (a)7056鑄態合金; (b)7056+Sc鑄態合金; (c)7056鑄態合金; (d)7056+Sc鑄態合金; (e)7056固溶態合金; (f)7056+Sc固溶態合金; (g)7056時效態合金; (h)7056+Sc時效態合金
Figure 1. Microstructure of two alloys in different states: (a)7056 alloy (as-cast); (b)7056 alloy with Sc (as-cast); (c)7056 alloy (as-cast); (d)7056 alloy with Sc (as-cast); (e)7056 alloy (solid solution state); (f)7056 alloy with Sc (solid solution state); (g)7056 alloy (aging state); (h)7056 alloy with Sc (aging state)
表 1 兩種合金的化學成分(質量分數)
Table 1. Chemical composition of the two alloys?
% 樣品 Zn Mg Cu Zr Si Fe Mn Ti Sc Al 1 9.56 1.94 1.46 0.18 0.0054 0.012 0.11 0.06 — 余量 2 9.44 1.93 1.50 0.18 0.0060 0.011 0.10 0.09 0.2 余量 表 2 兩種合金在固溶處理及時效處理后的機械性能
Table 2. Mechanical properties of the alloys under solution treatment and aging treatment
試樣 狀態 屈服強度/MPa 抗拉強度/MPa 斷后伸長率/% 1 固溶態 465 638 10.12 時效態 668 714 10.82 2 固溶態 418 588 11.28 時效態 657 693 13.60 -
參考文獻
[1] Tang Z Q, Liu N, Su Y, et al. Influence of scandium on microstructure and property of 6066 aluminum alloy and study on the aging process. Heat Treat, 2016, 31(1): 7 doi: 10.3969/j.issn.1008-1690.2016.01.002湯振齊, 劉寧, 蘇宇, 等. 鈧對6066鋁合金組織和性能的影響及其時效工藝研究. 熱處理, 2016, 31(1): 7 doi: 10.3969/j.issn.1008-1690.2016.01.002 [2] Wen K, Fan Y Q, Wang G J, et al. Aging behavior and precipitate characterization of a high Zn-containing Al-Zn-Mg-Cu alloy with various tempers. Mater Des, 2016, 101: 16 doi: 10.1016/j.matdes.2016.03.150 [3] Heinz A, Haszler A, Keidel C, et al. Recent development in aluminum alloys for aerospace applications. Mater Sci Eng A, 2000, 280(1): 102 doi: 10.1016/S0921-5093(99)00674-7 [4] Dumont D, Deschamps A, Brechet Y. On the relationship between microstructure, strength and tonghness in AA7050 aluminum alloy. Mater Sci Eng A, 2003, 356(1-2): 326 doi: 10.1016/S0921-5093(03)00145-X [5] Liu Y F, Tian W, Sun Y. Research progress of microalloying of Al-Zn-Mg-Cu aluminum alloy. Nonferrous Met Mater Eng, 2018, 39(1): 38 https://www.cnki.com.cn/Article/CJFDTOTAL-SHHA201801007.htm劉懿芳, 田偉, 孫玥. Al-Zn-Mg-Cu系鋁合金微合金化的研究進展. 有色金屬材料與工程, 2018, 39(1): 38 https://www.cnki.com.cn/Article/CJFDTOTAL-SHHA201801007.htm [6] Yang L H, Liu Z Y, Wang M X, et al. Effects of Sc, retrogression and re-aging on stress corrosion resistance of 7075 aluminum alloy. Heat Treat Met, 2018, 43(2): 35 https://www.cnki.com.cn/Article/CJFDTOTAL-JSRC201802007.htm楊麗輝, 劉志勇, 王明星, 等. Sc及回歸再時效處理對7075鋁合金抗應力腐蝕性能的影響. 金屬熱處理, 2018, 43(2): 35 https://www.cnki.com.cn/Article/CJFDTOTAL-JSRC201802007.htm [7] Zhu Z F, Shi C L, Li H, et al. Effect of solution treatment on microstructures and mechanical properties of 7150 aluminum alloy. Hot Work Technol, 2018, 47(8): 201 https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201808056.htm祝貞鳳, 史春麗, 李輝, 等. 固溶處理對7150鋁合金顯微組織和力學性能的影響. 熱加工工藝, 2018, 47(8): 201 https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201808056.htm [8] Zuo J R. Mechanisms for Optimizing the Microstructures and Properties by Thermomechanical Treatments based on Strain-induced Precipitation in 7055 Aluminum Alloy [Dissertation]. Beijing: University of Science and Technology Beijing, 2018左錦榮. 基于應變誘導析出的形變熱處理工藝對7055鋁合金組織和性能的改善[學位論文]. 北京: 北京科技大學, 2018 [9] Yu C F, Liu Z W, Yang L. Effect of heat treatment process on corrosion properties of 7075 alloy. Heat Treat Technol Equip, 2018, 39(2): 50 https://www.cnki.com.cn/Article/CJFDTOTAL-GWRC201802017.htm于長富, 劉兆偉, 楊路. 熱處理工藝對7075合金腐蝕性能的影響. 熱處理技術與裝備, 2018, 39(2): 50 https://www.cnki.com.cn/Article/CJFDTOTAL-GWRC201802017.htm [10] Wang J J, Huang Y C, Liu Y, et al. Influence of aging treatment on the microstructure and corrosion properties of Al-Zn-Mg-Cu-Zr-Er aluminum alloy. Nonferrous Met Sci Eng, 2018, 9(2): 47 https://www.cnki.com.cn/Article/CJFDTOTAL-JXYS201802009.htm王井井, 黃元春, 劉宇, 等. 時效工藝對Al-Zn-Mg-Cu-Zr-Er鋁合金組織與耐腐蝕性影響. 有色金屬科學與工程, 2018, 9(2): 47 https://www.cnki.com.cn/Article/CJFDTOTAL-JXYS201802009.htm [11] Zhao X Y, Song H, Wang X. Effect of aging process on corrosion behavior of rolled 7075 aluminum alloy. Trans Mater Heat Treat, 2018, 39(3): 21 https://www.cnki.com.cn/Article/CJFDTOTAL-JSCL201803005.htm趙曉燕, 宋航, 王旭. 時效工藝對軋制態7075鋁合金耐蝕性能的影響. 材料熱處理學報, 2018, 39(3): 21 https://www.cnki.com.cn/Article/CJFDTOTAL-JSCL201803005.htm [12] Liu J T, Zhang Y A, Li X W, et al. Microstructure and properties of two-step aged novel 7056 aluminum alloy. Chin J Nonferrous Met, 2016, 26(9): 1850 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201609004.htm劉俊濤, 張永安, 李錫武, 等. 新型7056鋁合金雙級時效的顯微組織和性能. 中國有色金屬學報, 2016, 26(9): 1850 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201609004.htm [13] Jiang J H. Study on Heat Treatment Process and Microstructure of 7056 Aluminum Alloy [Dissertation]. Changsha: Central South University, 2012蔣建輝. 7056鋁合金熱處理工藝與組織性能研究[學位論文]. 長沙: 中南大學, 2012 [14] Jiang J H, Zheng Z Q, Tang J, et al. Microstructure and properties of single-aging 7056 aluminum alloy. Mater Mech Eng, 2013, 37(4): 69 https://www.cnki.com.cn/Article/CJFDTOTAL-GXGC201304021.htm蔣建輝, 鄭子樵, 唐娟, 等. 單級時效7056鋁合金的顯微組織與性能. 機械工程材料, 2013, 37(4): 69 https://www.cnki.com.cn/Article/CJFDTOTAL-GXGC201304021.htm [15] Guo F A, Zhao Y Q, Li J P, et al. Effect of deformation conditions on microstructure evolution of 7056 aluminium alloy during hot deformation. Mater Rev, 2014, 28(24): 463郭富安, 趙業青, 李俊鵬, 等. 變形條件對7056鋁合金熱變形顯微組織演化的影響. 材料導報, 2014, 28(24): 463 [16] Wang G J, Sun L M, Li X W, et al. Experimental study on microstructure and properties of 7056 aluminum alloy. Light Alloy Fabric Technol, 2016, 44(4): 45 https://www.cnki.com.cn/Article/CJFDTOTAL-QHJJ201604014.htm王國軍, 孫黎明, 李錫武, 等. 7056鋁合金組織與性能的試驗研究. 輕合金加工技術, 2016, 44(4): 45 https://www.cnki.com.cn/Article/CJFDTOTAL-QHJJ201604014.htm [17] Liu H N, Yang G Y, Qi Y H, et al. Effects of Sc on the microstructures and mechanical properties of Al-Zn-Mg-Cu casting aluminum alloy. Foundry, 2013, 62(1): 4 https://www.cnki.com.cn/Article/CJFDTOTAL-ZZZZ201301005.htm劉華娜, 楊光昱, 齊元昊, 等. Sc對Al-Zn-Mg-Cu系鑄造鋁合金組織與性能的影響. 鑄造, 2013, 62(1): 4 https://www.cnki.com.cn/Article/CJFDTOTAL-ZZZZ201301005.htm [18] Li H, Yang Y X, Zheng Z Q, et al. Effect of minor addition of scandium on microstructures and mechanical properties of 7055 aluminum alloy. Mater Sci Technol, 2006, 14(1): 46 https://www.cnki.com.cn/Article/CJFDTOTAL-CLKG200601013.htm李海, 楊迎新, 鄭子樵, 等. 少量Sc對7055鋁合金組織與性能的影響. 材料科學與工藝, 2006, 14(1): 46 https://www.cnki.com.cn/Article/CJFDTOTAL-CLKG200601013.htm [19] Yang K. The Effect of Sc on the Microstructure and Properties of 7075 Aluminum Alloy [Dissertation]. Hefei: Hefei University of Technology, 2016楊凱. Sc對7075鋁合金組織和性能的影響[學位論文]. 合肥: 合肥工業大學, 2016 [20] Xiao D H, Chao H, Chen K H, et al. Effect of minor Sc addition on microstructure and properties of AA7085 alloy. Chin J Nonferrous Met, 2008, 18(12): 2145 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ200812007.htm肖代紅, 巢宏, 陳康華, 等. 微量Sc對AA7085鋁合金組織與性能的影響. 中國有色金屬學報, 2008, 18(12): 2145 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ200812007.htm [21] Zhao B, Li X B, Wang J L, et al. Influence of micro-Sc on casting microstructures and mechanical properties of high strength aluminum alloy. J Netshape Form Eng, 2015, 7(6): 70 https://www.cnki.com.cn/Article/CJFDTOTAL-JMCX201506013.htm趙賓, 李向博, 王久林, 等. 微量Sc對高強鋁合金鑄態組織性能的影響. 精密成形工程, 2015, 7(6): 70 https://www.cnki.com.cn/Article/CJFDTOTAL-JMCX201506013.htm [22] Zheng X J, Wang M X, Guo Q N, et al. Effects of scandium on the mechanical properties and recrystallization behaviour of 7050 aluminum alloy. Spec Cast Nonferrous Alloys, 2016, 36(8): 876 https://www.cnki.com.cn/Article/CJFDTOTAL-TZZZ201608038.htm鄭曉靜, 王明星, 郭巧能, 等. Sc對7050鋁合金力學性能和再結晶行為的影響. 特種鑄造及有色合金, 2016, 36(8): 876 https://www.cnki.com.cn/Article/CJFDTOTAL-TZZZ201608038.htm [23] Zhou M, Gan P Y, Deng H H, et al. Research status and prospect of Sc microalloying aluminum alloys. Mater China, 2018, 37(2): 154 https://www.cnki.com.cn/Article/CJFDTOTAL-XJKB201802011.htm周民, 甘培原, 鄧鴻華, 等. 含鈧微合金化鋁合金研究現狀及發展趨勢. 中國材料進展, 2018, 37(2): 154 https://www.cnki.com.cn/Article/CJFDTOTAL-XJKB201802011.htm [24] Cao H Q. Preparation and Properties of Oxide Dispersion Strengthened Aluminum Alloys [Dissertation]. Beijing: University of Science and Technology Beijing, 2016曹慧欽. 彌散強化鋁合金的制備及性能研究[學位論文]. 北京: 北京科技大學, 2016 [25] Chen X. Study on the Heat Treatment, Microstructure and Properties of an A1-Zn-Mg-Cu Alloy [Dissertation]. Changsha: Central South University, 2012陳旭. Al-Zn-Mg-Cu合金熱處理工藝及組織性能研究[學位論文]. 長沙: 中南大學, 2012 [26] Wang T, Yin Z M. Research status and development trend of ultra-high strength aluminum alloys. Chin J Rare Met, 2006, 30(2): 197 https://www.cnki.com.cn/Article/CJFDTOTAL-ZXJS200602016.htm王濤, 尹志民. 高強變形鋁合金的研究現狀和發展趨勢. 稀有金屬, 2006, 30(2): 197 https://www.cnki.com.cn/Article/CJFDTOTAL-ZXJS200602016.htm [27] Wang H B, Ma P C, Zhao H Y, et al. Effect of aging treatments on microstructure and properties of cast-rolled 7050 aluminum alloy. Trans Mater Heat Treat, 2011, 32(10): 85 https://www.cnki.com.cn/Article/CJFDTOTAL-JSCL201110016.htm王洪斌, 馬鵬程, 趙紅陽, 等. 時效處理對鑄軋7050鋁合金組織和性能的影響. 材料熱處理學報, 2011, 32(10): 85 https://www.cnki.com.cn/Article/CJFDTOTAL-JSCL201110016.htm [28] Li Q. Influence of natural aging on mechanical properties of 7085 aluminum alloy. Alum Fabric, 2018(2): 4 https://www.cnki.com.cn/Article/CJFDTOTAL-LJGO201802002.htm李群. 自然時效對7085鋁合金力學性能的影響. 鋁加工, 2018(2): 4 https://www.cnki.com.cn/Article/CJFDTOTAL-LJGO201802002.htm -