<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

鉛離子對苯乙烯膦酸浮選錫石的活化作用

李艷軍 劉暢 劉杰 宮貴臣

李艷軍, 劉暢, 劉杰, 宮貴臣. 鉛離子對苯乙烯膦酸浮選錫石的活化作用[J]. 工程科學學報, 2019, 41(10): 1274-1279. doi: 10.13374/j.issn2095-9389.2018.09.04.003
引用本文: 李艷軍, 劉暢, 劉杰, 宮貴臣. 鉛離子對苯乙烯膦酸浮選錫石的活化作用[J]. 工程科學學報, 2019, 41(10): 1274-1279. doi: 10.13374/j.issn2095-9389.2018.09.04.003
LI Yan-jun, LIU Chang, LIU Jie, GONG Gui-chen. Activation effect of Pb2+ in cassiterite flotation with styrene phosphonic acid as collector[J]. Chinese Journal of Engineering, 2019, 41(10): 1274-1279. doi: 10.13374/j.issn2095-9389.2018.09.04.003
Citation: LI Yan-jun, LIU Chang, LIU Jie, GONG Gui-chen. Activation effect of Pb2+ in cassiterite flotation with styrene phosphonic acid as collector[J]. Chinese Journal of Engineering, 2019, 41(10): 1274-1279. doi: 10.13374/j.issn2095-9389.2018.09.04.003

鉛離子對苯乙烯膦酸浮選錫石的活化作用

doi: 10.13374/j.issn2095-9389.2018.09.04.003
基金項目: 

國家自然科學基金資助項目 51674066

詳細信息
    通訊作者:

    劉暢, E-mail: reliuchang@163.com

  • 中圖分類號: TD952

Activation effect of Pb2+ in cassiterite flotation with styrene phosphonic acid as collector

More Information
  • 摘要: 通過單礦物浮選試驗揭示了Pb2+對苯乙烯膦酸(SPA)浮選錫石效果的影響規律,在此基礎上,利用接觸角測定、Zeta電位檢測、紅外光譜分析和浮選溶液化學研究了苯乙烯膦酸浮選錫石體系中Pb2+的活化作用機理.單礦物試驗結果表明:在礦漿pH為2.0~8.0的區間內Pb2+對錫石的浮選具有明顯的活化作用,礦漿pH為4.0時錫石的回收率最高,達到93.78%,與不存在Pb2+的情況相比提高了5.33%.Zeta電位檢測、紅外光譜分析和浮選溶液化學結果表明:苯乙烯膦酸主要化學吸附于錫石表面,使錫石表面的Zeta電位負移,Pb2+的作用促進了苯乙烯膦酸的吸附,進一步降低了錫石表面的Zeta電位;Pb2+可以與錫石表面的Sn4+發生置換,PbOH+能夠與錫石表面的Sn-OH發生相互作用形成以Sn-O-Pb+形式存在的絡合物,這些作用增加了錫石表面的活性位點數量,使得苯乙烯膦酸在錫石表面的吸附量增多,導致了錫石的活化.

     

  • 圖  1  錫石試樣X射線衍射分析圖譜

    Figure  1.  XRD analysis of cassiterite

    圖  2  苯乙烯膦酸用量和礦漿pH值對錫石回收率的影響

    Figure  2.  Influence of SPA dosage and pulp pH values on cassiterite recovery

    圖  3  不同礦漿pH值下Pb2+對錫石回收率的影響

    Figure  3.  Influence of Pb2+ on cassiterite recovery at different pulp pH values

    圖  4  Pb2+和苯乙烯膦酸對錫石Zeta電位的影響

    Figure  4.  Influence of Pb2+ and SPA on the zeta-potential of cassiterite

    圖  5  錫石和Pb2+水解組分的濃度對數圖.(a)錫石溶解組分;(b)Pb2+水解組分(Pb2+濃度為3×10-4 mol ·L-1)

    Figure  5.  Concentration logarithmic diagram of cassiterite and Pb2+ hydrolyzation components: (a) cassiterite hydrolyzation; (b) Pb2+ hydrolyzation

    圖  6  苯乙烯膦酸的紅外光譜

    Figure  6.  Infrared spectra of SPA

    圖  7  錫石與藥劑作用前后的紅外光譜.(a)錫石;(b)與苯乙烯膦酸作用后的錫石;(c)與Pb2+和苯乙烯膦酸作用后的錫石

    Figure  7.  Infrared spectra of cassiterite before and after treated with Pb2+ and SPA: (a) cassiterite; (b) cassiterite treated with SPA; (c) cassiterite treated with Pb2+ and SPA

    表  1  錫石試樣化學成分分析結果(質量分數)

    Table  1.   Chemical composition of cassiterite sample?%

    SnO2 Na CaO MgO K2O Al2O3 SiO2
    96.31 < 0.01 < 0.01 0.25 < 0.01 1.49 0.086
    下載: 導出CSV

    表  2  試驗所用藥劑

    Table  2.   List of reagents used in experiments

    藥劑名稱 分子式 純度 生產廠家
    苯乙烯膦酸 C8H9O3P 分析純 北京礦冶研究總院
    硝酸鉛 Pb(NO3)2 分析純 國藥集團化學試劑有限公司
    鹽酸 HCl 分析純 北京化學試劑公司
    氫氧化鈉 NaOH 分析純 北京市紅星化工廠
    下載: 導出CSV

    表  3  不同藥劑作用后錫石表面接觸角的變化

    Table  3.   Changes of cassiterite surface contact angle in the presence of different reagents

    藥劑名稱 接觸角,θ/(°) cosθ 1-cosθ
    33 0.84 0.16
    苯乙烯膦酸 124 -0.56 1.56
    Pb2++苯乙烯膦酸 133 -0.68 1.68
    下載: 導出CSV
    久色视频
  • [1] Angadi S I, Sreenivas T, Jeon H S, et al. A review of cassiterite beneficiation fundamentals and plant practices. Miner Eng, 2015, 70: 178 doi: 10.1016/j.mineng.2014.09.009
    [2] Tian M J, Liu R Q, Gao Z Y, et al. Activation mechanism of Fe (Ⅲ) ions in cassiterite flotation with benzohydroxamic acid collector. Miner Eng, 2018, 119: 31 doi: 10.1016/j.mineng.2018.01.011
    [3] Feng Q C, Wen S M, Zhao W J, et al. Interaction mechanism of magnesium ions with cassiterite and quartz surfaces and its response to flotation separation. Sep Purif Technol, 2018, 206: 239 doi: 10.1016/j.seppur.2018.06.005
    [4] Leistner T, Embrechts M, Leiβner T, et al. A study of the reprocessing of fine and ultrafine cassiterite from gravity tailing residues by using various flotation techniques. Miner Eng, 2016, 96-97: 94 doi: 10.1016/j.mineng.2016.06.020
    [5] Zhou Y C, Tong X, Song S X, et al. Beneficiation of cassiterite fines from a tin tailing slime by froth flotation. Sep Sci Technol, 2014, 49(3): 458 doi: 10.1080/01496395.2013.818036
    [6] Tian M J, Gao Z Y, Sun W, et al. Activation role of lead ions in benzohydroxamic acid flotation of oxide minerals: new perspective and new practice. J Colloid Interface Sci, 2018, 529: 150 doi: 10.1016/j.jcis.2018.05.113
    [7] Yang Z R, Bian X, Wu W Y. Flotation performance and adsorption mechanism of styrene phosphonic acid as a collector to synthetic(Ce, La)2O3. J Rare Earths, 2017, 35(6): 621 doi: 10.1016/S1002-0721(17)60955-4
    [8] Wang X, Tong X, Zhou Y C. Process mineralogy and ore-dressing process of cassiterite. Min Metall, 2011, 20(4): 15 doi: 10.3969/j.issn.1005-7854.2011.04.004

    王曉, 童雄, 周永誠. 錫石工藝礦物學與選礦工藝. 礦冶, 2011, 20(4): 15 doi: 10.3969/j.issn.1005-7854.2011.04.004
    [9] Wang P P, Qin W Q, Ren L Y, et al. Solution chemistry and utilization of alkyl hydroxamic acid in flotation of fine cassiterite. Trans Nonferrous Met Soc China, 2013, 23(6): 1789 doi: 10.1016/S1003-6326(13)62662-X
    [10] Kuys K J, Roberts N K. In situ investigation of the adsorption of styrene phosphonic acid on cassiterite by FTIR-ATR spectroscopy. Colloids Surf, 1987, 24(1): 1 doi: 10.1016/0166-6622(87)80257-3
    [11] Feng Q C, Zhao W J, Wen S M, et al. Activation mechanism of lead ions in cassiterite flotation with salicylhydroxamic acid as collector. Sep Purif Technol, 2017, 178: 193 doi: 10.1016/j.seppur.2017.01.053
    [12] Gong G C, Liu J, Han Y X. Effect of metal ions on floatation behaviors of fine cassiterite. Multi Utiliz Miner Resources, 2016(4): 43 doi: 10.3969/j.issn.1000-6532.2016.04.010

    宮貴臣, 劉杰, 韓躍新. 金屬離子對微細粒錫石浮選行為的影響. 礦產綜合利用, 2016(4): 43 doi: 10.3969/j.issn.1000-6532.2016.04.010
    [13] Tan X, He F Y, Shang Y B, et al. Flotation behavior and adsorption mechanism of (1-hydroxy-2-methyl-2-octenyl) phosphonic acid to cassiterite. Trans Nonferrous Met Soc China, 2016, 26(9): 2469 doi: 10.1016/S1003-6326(16)64368-6
    [14] Chen Y. Experimental Study on Flotation of Dulong Fine-Grained Cassiterite[Dissertation]. Kunming: Kunming University of Science and Technology, 2017

    陳瑜. 都龍微細粒級錫石浮選試驗研究[學位論文]. 昆明: 昆明理工大學, 2017
    [15] Li F X, Zhong H, Zhao G, et al. Flotation performances and adsorption mechanism of α-hydroxyoctyl phosphinic acid to cassiterite. Appl Surf Sci, 2015, 353: 856
    [16] Gong G C, Han Y X, Liu J, et al. In situ investigation of the adsorption of styrene phosphonic acid on cassiterite (110) surface by molecular modeling. Minerals, 2017, 7(10): 181 doi: 10.3390/min7100181
    [17] Tian M J, Zhang C Y, Han H S, et al. Novel insights into adsorption mechanism of benzohydroxamic acid on lead (Ⅱ)-activated cassiterite surface: An integrated experimental and computational study. Miner Eng, 2018, 122: 327 doi: 10.1016/j.mineng.2018.04.012
  • 加載中
圖(7) / 表(3)
計量
  • 文章訪問數:  744
  • HTML全文瀏覽量:  339
  • PDF下載量:  18
  • 被引次數: 0
出版歷程
  • 收稿日期:  2018-09-04
  • 刊出日期:  2019-10-01

目錄

    /

    返回文章
    返回