<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于改進鴿群優化和馬爾可夫鏈的多無人機協同搜索方法

王瑞 肖冰松

王瑞, 肖冰松. 基于改進鴿群優化和馬爾可夫鏈的多無人機協同搜索方法[J]. 工程科學學報, 2019, 41(10): 1342-1350. doi: 10.13374/j.issn2095-9389.2018.09.02.002
引用本文: 王瑞, 肖冰松. 基于改進鴿群優化和馬爾可夫鏈的多無人機協同搜索方法[J]. 工程科學學報, 2019, 41(10): 1342-1350. doi: 10.13374/j.issn2095-9389.2018.09.02.002
WANG Rui, XIAO Bing-song. Cooperative search for multi-UAVs via an improved pigeon-inspired optimization and Markov chain approach[J]. Chinese Journal of Engineering, 2019, 41(10): 1342-1350. doi: 10.13374/j.issn2095-9389.2018.09.02.002
Citation: WANG Rui, XIAO Bing-song. Cooperative search for multi-UAVs via an improved pigeon-inspired optimization and Markov chain approach[J]. Chinese Journal of Engineering, 2019, 41(10): 1342-1350. doi: 10.13374/j.issn2095-9389.2018.09.02.002

基于改進鴿群優化和馬爾可夫鏈的多無人機協同搜索方法

doi: 10.13374/j.issn2095-9389.2018.09.02.002
基金項目: 

空軍工程大學航空工程學院科研創新基金資助項目 CXJJ201809

詳細信息
    通訊作者:

    肖冰松, E-mail: 58818252@qq.com

  • 中圖分類號: V249.1

Cooperative search for multi-UAVs via an improved pigeon-inspired optimization and Markov chain approach

More Information
  • 摘要: 針對多無人機在協同搜索過程中存在重復搜索、目標靜止、搜索效率低的問題,提出基于改進鴿群優化和馬爾可夫鏈的多無人機協同搜索方法.首先,建立類似傳感器探測范圍的蜂窩狀環境模型,降低對搜索區域的重復搜索;其次,建立滿足高斯分布的馬爾可夫鏈動態目標運動模型;然后,將柯西擾動引入基本鴿群優化算法的地圖和指南針算子,高斯擾動引入地標算子,同時利用模擬退火機制保留次優個體,進而有效緩減基本鴿群優化算法易陷入局部最優的問題.最后,通過仿真實驗將本文算法與其他群體智能算法進行比較,結果表明新型算法的合理性和有效性.

     

  • 圖  1  環境信息模型

    Figure  1.  Environmental information model

    圖  2  UAVs可選航向圖

    Figure  2.  UAVs optional heading diagram

    圖  3  不同函數隨機一次和10次迭代最優值收斂情況.(a)Rastrigrin; (b)Schaffer

    Figure  3.  Optimal value convergence of different functions at random times and 10 times of iteration: (a) Rastrigrin; (b) Schaffer

    圖  4  目標和環境的初始狀態. (a)目標初始位置; (b)初始環境不確定圖

    Figure  4.  Initial state of target and environment: (a) initial position of the target; (b) initial environment uncertainty

    圖  5  無人機的運動軌跡和覆蓋率.(a)30步的運動軌跡; (b)60步的運動軌跡; (c)搜索范圍覆蓋率

    Figure  5.  The movement trajectories of unmanned aerial vehicle: (a) the movement trajectory of 30 steps; (b) the movement trajectory of 60 steps; (c) search coverage

    圖  6  協同搜索目標數和有效性評估.(a)搜索目標平均數; (b)有效性評估

    Figure  6.  Effectiveness evaluation of collaborative search: (a) the average target number; (b) effectiveness assessment

    表  1  PIO和MSAPIO參數表

    Table  1.   Parameters of PIO and MSAPIO

    參數 參數定義 數值 應用
    NC1 地圖和指南針算子迭代次數 15 鴿群優化擾動模擬退火鴿群優化
    NC2 地標算子迭代次數 5
    N 鴿子總數 50
    R 地圖和指南針因子 0.3
    a 柯西分布概率密度參數 1 擾動模擬鴿群優化
    μ 高斯分布率密度函數參數(均值) 0
    σ 高斯分布概率密度函數參數(方差) 1
    K1 地圖和指南針算子的柯西擾動條件 3
    K2 地標算子的高斯擾動條件 2
    e1 地圖和指南針算子擾動閾值 0.1
    e2 地標算子擾動閾值 0.01
    T0 初始退火溫度 100
    下載: 導出CSV
    久色视频
  • [1] Qiu H X, Wei C, Dou R, et al. Fully autonomous flying: from collective motion in bird flocks to unmanned aerial vehicle autonomous swarms. Sci China Inf Sci, 2015, 58(12): 128201 http://forest.ckcest.cn/d/hxwx/AVkJ5b--49MUqoKBOAGM.html
    [2] Peng H, Huo M L, Liu Z Z, et al. Simulation analysis of cooperative target search strategies for multiple UAVs//The 27th Chinese Control and Decision Conference. Qingdao, 2015: 4855
    [3] Qiu H X, Duan H B. From collective flight in bird flocks to unmanned aerial vehicle autonomous swarm formation. Chin J Eng, 2017, 39(3): 317 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201703001.htm

    邱華鑫, 段海濱. 從鳥群群集飛行到無人機自主集群編隊. 工程科學學報, 2017, 39(3): 317 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201703001.htm
    [4] Saadaoui H, El Bouanani F. Information sharing based on local PSO for UAVs cooperative search of unmoved targets//2018 International Conference on Advanced Communication Technologies and Networking (CommNet). Marrakech, Morocco, 2018: 1
    [5] Yang F, Ji X L, Yang C W, et al. Cooperative search of UAV swarm based on improved ant colony algorithm in uncertain environment//2017 IEEE International Conference on Unmanned Systems. Beijing, 2017: 231
    [6] Duan H B, Qiao P X. Pigeon-inspired optimization: a new swarm intelligence optimizer for air robot path planning. Int J Intell Comput Cybern, 2014, 7(1): 24 doi: 10.1108/IJICC-02-2014-0005
    [7] Duan H B, Ye F. Progresses in pigeon-inspired optimization algorithms. J Beijing Univ Technol, 2017, 43(1): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD201701004.htm

    段海濱, 葉飛. 鴿群優化算法研究進展. 北京工業大學學報, 2017, 43(1): 1 https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD201701004.htm
    [8] Li C, Duan H B. Target detection approach for UAVs via improved pigeon-inspired optimization and edge potential function. Aerosp Sci Technol, 2014, 39: 352 doi: 10.1016/j.ast.2014.10.007
    [9] Zhong Y, Yao P Y, Sun Y, et al. Method of multi-UAVs cooperative search for Markov moving targets//2017 29th Chinese Control And Decision Conference (CCDC). Chongqing, China, 2017: 6783
    [10] Shen D, Wei R X, Ru C J. Digital-pheromone-based control method for UAV swarm search. Syst Eng Electron, 2013, 35(3): 591 doi: 10.3969/j.issn.1001-506X.2013.03.24

    沈東, 魏瑞軒, 茹常劍. 基于數字信息素的無人機集群搜索控制方法. 系統工程與電子技術, 2013, 35(3): 591 doi: 10.3969/j.issn.1001-506X.2013.03.24
    [11] Kalivarapu V, Winer E. Digital pheromone implementation of PSO with velocity vector accelerated by commodity graphics hardware//Proceedings of the 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Palm Springs California, 2009: 1017
    [12] Bertuccelli L F, How J P. Search for dynamic targets with uncertain probability maps//2006 American Control Conference. Minneapolis, MN, USA, 2006: 737
    [13] Kirkpatrick S, Gelatt C D, Vecchi M P. Optimization by simulated annealing. Science, 1983, 220(4598): 671 doi: 10.1126/science.220.4598.671
    [14] Lan K T, Lan C H. Notes on the distinction of Gaussian and Cauchy mutations//2008 Eighth International Conference on Intelligent Systems Design and Applications. Kaohsiung, Taiwan, 2008: 272
    [15] Duan H B, Yang Z Y. Large civil aircraft receding horizon control based on Cauchy mutation pigeon inspired optimization. Sci Sin Technol, 2018, 48(3): 277 https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201803004.htm

    段海濱, 楊之元. 基于柯西變異鴿群優化的大型民用飛機滾動時域控制. 中國科學: 技術科學, 2018, 48(3): 277 https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201803004.htm
  • 加載中
圖(6) / 表(1)
計量
  • 文章訪問數:  1194
  • HTML全文瀏覽量:  447
  • PDF下載量:  46
  • 被引次數: 0
出版歷程
  • 收稿日期:  2018-09-02
  • 刊出日期:  2019-10-01

目錄

    /

    返回文章
    返回