<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

迭代生成微分方程分解方法研究

李康強 馮志鵬

李康強, 馮志鵬. 迭代生成微分方程分解方法研究[J]. 工程科學學報, 2017, 39(10): 1575-1583. doi: 10.13374/j.issn2095-9389.2017.10.017
引用本文: 李康強, 馮志鵬. 迭代生成微分方程分解方法研究[J]. 工程科學學報, 2017, 39(10): 1575-1583. doi: 10.13374/j.issn2095-9389.2017.10.017
LI Kang-qiang, FENG Zhi-peng. Decomposition method of iterated generating differential equation[J]. Chinese Journal of Engineering, 2017, 39(10): 1575-1583. doi: 10.13374/j.issn2095-9389.2017.10.017
Citation: LI Kang-qiang, FENG Zhi-peng. Decomposition method of iterated generating differential equation[J]. Chinese Journal of Engineering, 2017, 39(10): 1575-1583. doi: 10.13374/j.issn2095-9389.2017.10.017

迭代生成微分方程分解方法研究

doi: 10.13374/j.issn2095-9389.2017.10.017
基金項目: 

國家自然科學基金資助項目(11272047,51475038)

教育部新世紀優秀人才支持計劃資助項目(NCET-12-0775)

詳細信息
  • 中圖分類號: TP165+.3

Decomposition method of iterated generating differential equation

  • 摘要: 針對實際振動信號中多分量分離問題,在生成微分方程解調技術的基礎上,提出一種新的迭代分解方法.首先采用生成微分方程(generating differential equation,GDE),估計初始振動信號的瞬時頻率和幅值包絡,然后對瞬時頻率通過低通濾波分離出第一個頻率,基于此頻率對原始信號通過高通濾波器后提取的成分作為第一個分量,最后用初始信號減去第一個分量的余值作為下一次迭代的初始值,迭代同樣的步驟分析分解直到獲取所有信號分量,以低于能量比閾值作為迭代終止條件.本方法不需要先驗信息.通過仿真信號驗證并與傳統方法進行對比分析,證明了方法的有效性.通過實測軸承試驗信號的故障分析,證明了方法的實用性.

     

  • [4] Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for non-linear and non-stationary time series anaysis. Proc R Soc Lond A, 1998, 454:903
    [5] Feldman M. Time-varying vibration decomposition and analysis based on the Hilbert transform. J Sound Vib, 2006, 295(3-5):518
    [6] Feldman M. Theoretical analysis and comparison of the Hilbert transform decomposition methods. Mech Syst Signal Process, 2008, 22(3):509
    [7] Braun S, Feldman M. Decomposition of non-stationary signals into varying time scales:some aspects of the EMD and HVD methods. Mech Syst Signal Process, 2011, 25(7):2608
    [8] Gianfelici F, Biagetti G, Crippa P, et al. Multicomponent AM-FM representations:An asymptotically exact approach. IEEE T Audio Speech Language Process, 2007, 15(3):823
    [9] Gianfelici F, Turchetti C, Crippa P. Multicomponent AM-FM demodulation:the state of the art after the development of the iterated Hilbert transform//IEEE International Conference on Signal Processing and Communications. Dubai, 2007:1471
    [11] Qin Y. Multicomponent AM-FM demodulation based on energy separation and adaptive filtering. Mech Syst Signal Process, 2013, 38(2):440
    [13] Zayezdny A, Druckmann I. A new method of signal description and its applications to signal processing. Signal Process, 1991, 22(2):153
    [14] Zayezdny A, Tiunov S. Extrapolation of time series by their structural properties. Signal Process, 1993, 32(3):285
    [15] Zayezdny A, Tiunov S, Bronstein A. Extrapolation of real-time processes by their structural properties. Signal Process, 1994, 38(2):231
  • 加載中
計量
  • 文章訪問數:  5757
  • HTML全文瀏覽量:  4326
  • PDF下載量:  21
  • 被引次數: 0
出版歷程
  • 收稿日期:  2016-11-12

目錄

    /

    返回文章
    返回
    久色视频