<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于新型趨近律和擾動觀測器的永磁同步電機滑模控制

劉京 李洪文 鄧永停

劉京, 李洪文, 鄧永停. 基于新型趨近律和擾動觀測器的永磁同步電機滑模控制[J]. 工程科學學報, 2017, 39(6): 933-944. doi: 10.13374/j.issn2095-9389.2017.06.017
引用本文: 劉京, 李洪文, 鄧永停. 基于新型趨近律和擾動觀測器的永磁同步電機滑模控制[J]. 工程科學學報, 2017, 39(6): 933-944. doi: 10.13374/j.issn2095-9389.2017.06.017
LIU Jing, LI Hong-wen, DENG Yong-ting. PMSM sliding-mode control based on novel reaching law and disturbance observer[J]. Chinese Journal of Engineering, 2017, 39(6): 933-944. doi: 10.13374/j.issn2095-9389.2017.06.017
Citation: LIU Jing, LI Hong-wen, DENG Yong-ting. PMSM sliding-mode control based on novel reaching law and disturbance observer[J]. Chinese Journal of Engineering, 2017, 39(6): 933-944. doi: 10.13374/j.issn2095-9389.2017.06.017

基于新型趨近律和擾動觀測器的永磁同步電機滑模控制

doi: 10.13374/j.issn2095-9389.2017.06.017
基金項目: 

中國科學院長春光學精密機械與物理研究所三期創新工程資助項目(065X32CN60)

國家自然科學基金青年基金資助項目(11603024)

詳細信息
  • 中圖分類號: TM301.2

PMSM sliding-mode control based on novel reaching law and disturbance observer

  • 摘要: 為了提高永磁同步電機的轉速控制性能,克服擾動對伺服控制的影響,提出了一種基于新型趨近律和擾動觀測器的滑模控制方法.設計了一種新型趨近律,以解決傳統趨近律滑模面趨近時間和系統抖振之間的矛盾,提高系統響應快速性.綜合考慮系統存在內部參數攝動和外部負載擾動,設計了滑模擾動觀測器,并將觀測值前饋補償到速度控制器輸出端;將觀測器切換增益設計為擾動觀測誤差的函數,以削弱滑模觀測值抖振.仿真結果顯示,與傳統趨近律相比,采用新型趨近律可有效提高系統的響應速度,快速準確的跟蹤速度階躍信號;滑模觀測器可準確的觀測系統擾動的變化;當系統加入負載擾動時,PI控制最大轉速波動值為75 r·min-1,而基于新型趨近律和擾動觀測器的滑模控制最大轉速波動值較小為30 r·min-1,魯棒性更好.實驗結果顯示,采用基于新型趨近律和擾動觀測器的滑模控制方法可以快速跟蹤400 r·min-1的速度指令,調節時間為0.12 s,穩態跟蹤誤差為±4 r·min-1,且轉速無超調;滑模觀測器可準確無超調的估計系統擾動值,進一步提高系統的抗擾動性能;當電機以400 r·min-1穩速運行時,加入0.6 N·m的負載擾動,基于新型趨近律和擾動觀測器的滑模控制方法最大轉速波動為23 r·min-1,與PI控制相比,轉速波動減小了8%.上述仿真和實驗結果具有較好的一致性,表明基于新型趨近律和擾動觀測器的滑模控制方法可以有效抑制滑模控制系統的抖振,提高轉速控制系統的魯棒性和動態響應性能.

     

  • [1] Zhang X G, Sun L Z, Zhao K, et al. Nonlinear speed control for PMSM system using sliding-mode control and disturbance compensation techniques. IEEE Trans Power Electron, 2013, 28(3):1358
    [2] Feng G, Liu Y F, Huang L P. A new robust algorithm to improve the dynamic performance on the speed control of induction motor drive. IEEE Trans Power Electron, 2004, 19(6):1614
    [3] Choi H H, Vu N T T, Jung J W. Digital implementation of an adaptive speed regulator for a PMSM. IEEE Trans Power Electron, 2011, 26(1):3
    [5] Zhi D W, Xu L, Williams B W. Model-based predictive direct power control of doubly fed induction generators. IEEE Trans Power Electron, 2010, 25(2):341
    [7] Fnaiech M A, Betin F, Capolino G A, et al. Fuzzy logic and sliding-mode controls applied to six-phase induction machine with open phases. IEEE Trans Ind Electron, 2010, 57(1):354
    [8] Feng Y, Zheng J F, Yu X H, et al. Hybrid terminal sliding-mode observer design method for a permanent-magnet synchronous motor control system. IEEE Trans Ind Electron, 2009, 56(9):3424
    [9] Foo G H B, Rahman M F. Direct torque control of an IPM-Synchronous motor drive at very low speed using a sliding-mode stator flux observer. IEEE Trans Power Electron, 2010, 25(4):933
    [10] Li S H, Zhou M M, Yu X H. Design and implementation of terminal sliding mode control method for PMSM speed regulation system. IEEE Trans Ind Informatics, 2013, 9(4):1879
    [12] Wai R J, Chang H H. Backstepping wavelet neural network control for indirect field-oriented induction motor drive. IEEE Trans Neural Networks, 2004, 15(2):367
    [13] Lin F J, Hwang J C, Chou P H, et al. FPGA-based intelligentcomplementary sliding-mode control for PMSM servo-drive system. IEEE Trans Power Electron, 2010, 25(10):2573
    [14] Chen M S, Hwang Y R, Tomizuka M. A state-dependent boundary layer design for sliding mode control. IEEE Trans Autom Control, 2002, 47(10):1677
    [15] Singh M, Chandra A. Application of adaptive network-based fuzzy inference system for sensorless control of PMSG-based wind turbine with nonlinear-load-compensation capabilities. IEEE Trans Power Electron, 2011, 26(1):165
    [16] Chiu J Y C, Leung K K S, Chung H S H. High-order switching surface in boundary control of inverters. IEEE Trans Power Electron, 2007, 22(5):1753
    [18] Fallaha C J, Saad M, Kanaan H Y, et al. Sliding-mode robot control with exponential reaching law. IEEE Trans Ind Electron, 2011, 58(2):600
    [19] Zhang X G, Zhao K, Sun L. A PMSM sliding mode control system based on a novel reaching law//2011 International Conference on Electrical Machines and Systems (ICEMS). IEEE, 2011
    [20] Zhao K, Zhang X G, Sun L, et al. Sliding mode control of highspeed PMSM based on precision linearization control//2011 International Conference on Electrical Machines and Systems (ICEMS). IEEE, 2011
    [21] Wasu S M, Sarode U B, Bahavalkar M P. Speed control of PMSM system using improved reaching law based sliding mode control and disturbance observer technique. Int J Adv Comput Res, 2013, 3(4):312
    [22] Jin N Z, Wang X D, Wu X G. Current sliding mode control with a load sliding mode observer for permanent magnet synchronous machines. J Power Electron, 2014, 14(1):105
    [25] Leu V Q, Choi H H, Jung J W. Fuzzy sliding mode speed controller for PM synchronous motors with a load torque observer. IEEE Trans Power Electron, 2012, 27(3):1530
  • 加載中
計量
  • 文章訪問數:  911
  • HTML全文瀏覽量:  279
  • PDF下載量:  65
  • 被引次數: 0
出版歷程
  • 收稿日期:  2016-10-10

目錄

    /

    返回文章
    返回
    久色视频