<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

形態分量分析在滾動軸承故障診斷中的應用

劉永兵 周亞凱 馮志鵬

劉永兵, 周亞凱, 馮志鵬. 形態分量分析在滾動軸承故障診斷中的應用[J]. 工程科學學報, 2017, 39(6): 909-916. doi: 10.13374/j.issn2095-9389.2017.06.014
引用本文: 劉永兵, 周亞凱, 馮志鵬. 形態分量分析在滾動軸承故障診斷中的應用[J]. 工程科學學報, 2017, 39(6): 909-916. doi: 10.13374/j.issn2095-9389.2017.06.014
LIU Yong-bing, ZHOU Ya-kai, FENG Zhi-peng. Application of morphological component analysis for rolling element bearing fault diagnosis[J]. Chinese Journal of Engineering, 2017, 39(6): 909-916. doi: 10.13374/j.issn2095-9389.2017.06.014
Citation: LIU Yong-bing, ZHOU Ya-kai, FENG Zhi-peng. Application of morphological component analysis for rolling element bearing fault diagnosis[J]. Chinese Journal of Engineering, 2017, 39(6): 909-916. doi: 10.13374/j.issn2095-9389.2017.06.014

形態分量分析在滾動軸承故障診斷中的應用

doi: 10.13374/j.issn2095-9389.2017.06.014
詳細信息
  • 中圖分類號: TP165+.3

Application of morphological component analysis for rolling element bearing fault diagnosis

  • 摘要: 滾動軸承局部故障振動信號中的周期性沖擊是識別故障的關鍵特征.形態分量分析在由多種形態原子組成的過完備字典基礎上提取信號中的不同形態成分,基于這種思想提出了一種基于新型過完備復合字典的形態分量分析方法.依據滾動軸承故障振動信號中分量間的形態差異性,改進字典后該方法可以更具針對性地提取出包含故障特征的沖擊分量,配合包絡譜分析準確提取故障特征頻率,診斷滾動軸承局部故障.對比基于快速譜峭度法的軸承故障診斷方法,該方法可以避免人為選擇共振帶產生的不準確性和非最優問題,提高了故障診斷效果.通過軸承仿真信號和故障實驗信號分析驗證了該方法的有效性.

     

  • [4] Dwyer R. Detection of non-Gaussian signals by frequency domain kurtosis estimation//Acoustics, Speech, and Signal Processing, IEEE International Conference on ICASSP'83. Boston, 1983
    [5] Antoni J. Fast computation of the kurtogram for the detection of transient faults. Mech Syst Signal Process, 2007, 21(1):108
    [8] Starck J L, Moudden Y, Bobin J, et al. Morphological component analysis. J Brazilian Comput Soc, 2005, 10(3):31
    [9] Bobin J, Starck J L, Fadili J M, et al. Morphological component analysis:an adaptive thresholding strategy. IEEE Trans Image Process, 2007, 16(11):2675
    [10] Elad M, Starck J L, Querre P, et al. Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA). Appl Comput Harmonic Anal, 2005, 19(3):340
    [11] Starck J L, Elad M, Donoho D. Redundant multiscale transforms and their application for morphological component separation. Adv Imaging Electron Phys, 2004, 132:287
    [12] Abrial P, Moudden Y, Starck J L, et al. Morphological component analysis and inpainting on the sphere:application in physics and astrophysics. J Fourier Anal Appl, 2007, 13(6):729
    [16] Chen S S, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit. SIAM Rev, 2006, 43(1):129
    [17] Ho D, Randall R B. Optimisation of bearing diagnostic techniques using simulated and actual bearing fault signals. Mech Syst Signal Process, 2000, 14(5):763
  • 加載中
計量
  • 文章訪問數:  577
  • HTML全文瀏覽量:  162
  • PDF下載量:  23
  • 被引次數: 0
出版歷程
  • 收稿日期:  2016-07-13

目錄

    /

    返回文章
    返回
    久色视频