<listing id="l9bhj"><var id="l9bhj"></var></listing>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<cite id="l9bhj"><strike id="l9bhj"></strike></cite>
<var id="l9bhj"></var><cite id="l9bhj"><video id="l9bhj"></video></cite>
<menuitem id="l9bhj"></menuitem>
<cite id="l9bhj"><strike id="l9bhj"><listing id="l9bhj"></listing></strike></cite><cite id="l9bhj"><span id="l9bhj"><menuitem id="l9bhj"></menuitem></span></cite>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"></var>
<var id="l9bhj"><strike id="l9bhj"></strike></var>
<ins id="l9bhj"><span id="l9bhj"></span></ins>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

非線性組合硬化條件下鎂合金板料變形回彈預測

趙曉迪 岳振明 高軍 褚興榮

趙曉迪, 岳振明, 高軍, 褚興榮. 非線性組合硬化條件下鎂合金板料變形回彈預測[J]. 工程科學學報, 2017, 39(4): 550-556. doi: 10.13374/j.issn2095-9389.2017.04.010
引用本文: 趙曉迪, 岳振明, 高軍, 褚興榮. 非線性組合硬化條件下鎂合金板料變形回彈預測[J]. 工程科學學報, 2017, 39(4): 550-556. doi: 10.13374/j.issn2095-9389.2017.04.010
ZHAO Xiao-di, YUE Zhen-ming, GAO Jun, CHU Xing-rong. Springback prediction of magnesium alloy sheet with nonlinear combined hardening[J]. Chinese Journal of Engineering, 2017, 39(4): 550-556. doi: 10.13374/j.issn2095-9389.2017.04.010
Citation: ZHAO Xiao-di, YUE Zhen-ming, GAO Jun, CHU Xing-rong. Springback prediction of magnesium alloy sheet with nonlinear combined hardening[J]. Chinese Journal of Engineering, 2017, 39(4): 550-556. doi: 10.13374/j.issn2095-9389.2017.04.010

非線性組合硬化條件下鎂合金板料變形回彈預測

doi: 10.13374/j.issn2095-9389.2017.04.010
基金項目: 

國家自然科學基金資助項目(51605257)

詳細信息
  • 中圖分類號: TG386

Springback prediction of magnesium alloy sheet with nonlinear combined hardening

  • 摘要: 變形回彈作為金屬板料成形的主要缺陷之一,如何提高變應變路徑條件下的回彈預測精度一直是研究者們面臨的難題.本文針對鎂合金變形特點,提出了同時考慮同向硬化、動態硬化和屈服圓畸變的本構模型.以0.8 mm厚AZ31B鎂合金板料為研究對象,施加不同預拉伸后進行彎曲變形試驗,觀察了不同預變形對回彈規律的影響.同時結合有限元分析ABAQUS-Explicit (Vumat)和ABAQUS-Implicit (Umat)對板料的變形及回彈過程進行模擬仿真,對比試驗與模擬結果,驗證動態硬化對于鎂合金板料變形回彈的重要影響.

     

  • [2] Zhang H, Yan Y, Fan J F, et al. Improved mechanical properties of AZ31 magnesium alloy plates by pre-rolling followed by warm compression. Mater Sci Eng A, 2014, 618:540
    [3] Li B, McClelland Z, Horstemeyer S J, et al. Time dependent springback of a magnesium alloy. Mater Des, 2015, 66:575
    [5] Lee J Y, Lee M G, Barlat F, et al. Evaluation of constitutive models for springback prediction in U-draw/bending of DP and TRIP steel sheets. AIP Conf Proc, 2011, 1383:571
    [6] Lee M G, Kim C, Pavlina E J, et al. Advances in sheet forming-materials modeling, numerical simulation, and press technologies. J Manuf Sci Eng, 2011, 133(6):061001
    [7] Wagoner R H, Lim H, Lee M G. Advanced issues in springback. Int J Plast, 2013, 45:3
    [9] Prager W. A new method of analyzing stresses and strains in work-hardening plastic solids. J Appl Mech, 1956, 23:493
    [10] Ziegler H. A modification of Prager's hardening rule. Q Appl Math, 1959, 17(1):55
    [11] Sabourin F, Morestin F, Brunet M. Effect on non-linear kinematic hardening on spring-back analysis//Numisheet 2002. Corée du Sud, 2002
    [12] Chaboche J L. A review of some plasticity and viscoplasticity constitutive theories. Int J Plast, 2008, 24(10):1642
    [13] Chaboche J L, Jung O. Application of a kinematic hardening viscoplasticity model with thresholds to the residual stress relaxation. Int J Plast, 1997, 13(10):785
    [14] Yoshida F, Uemori T. A model of large-strain cyclic plasticity describing the Bauschinger effect and workhardening stagnation. Int J Plast, 2002, 18(5):661
    [15] Chung K, Lee M G, Kim D, et al. Spring-back evaluation of automotive sheets based on isotropic-kinematic hardening laws and non-quadratic anisotropic yield functions Part I:theory and formulation. Int J Plast, 2005, 21(5):861
    [16] Feigenbaum H P, Dafalias Y F. Directional distortional hardening at large plastic deformations. Int J Solids Struct, 2014, 51(23):3904
    [17] Pietryga M P, Vladimirov I N, Reese S. A finite deformation model for evolving flow anisotropy with distortional hardening including experimental validation. Mech Mater, 2012, 44:163
    [18] Borgqvist E, Lindstr m T, Tryding J, et al. Distortional hardening plasticity model for paperboard. Int J Solids Struct, 2014, 51(13):2411
    [19] Shi B D, Mosler J. On the macroscopic description of yield surface evolution by means of distortional hardening models:application to magnesium. Int J Plast, 2013, 44:1
    [20] Yue Z M. Ductile Damage Prediction in Sheet Metal Forming Processes[Dissertation]. Troyes:University of Technology of Troyes, 2014
    [21] Yue Z M, Badreddine H, Saanouni K, et al. On the distortion of yield surface under complex loading paths in sheet metal forming//IDDRG 2014 Conference. Paris, 2014
    [22] François M. A plasticity model with yield surface distortion for non proportional loading. Int J Plast, 2001, 17(5):703
    [23] Zang S L, Lee M G, Sun L, et al. Measurement of the Bauschinger behavior of sheet metals by three-point bending springback test with pre-strained strips. Int J Plast, 2014, 59:84
  • 加載中
計量
  • 文章訪問數:  578
  • HTML全文瀏覽量:  193
  • PDF下載量:  11
  • 被引次數: 0
出版歷程
  • 收稿日期:  2016-10-11

目錄

    /

    返回文章
    返回
    久色视频