Effect of Y-base rare earth on the microstructure and impact toughness of E36 steel plate
-
摘要: 運用掃描電鏡及能譜等分析手段研究了釔基稀土對E36鋼中夾雜物的變質作用以及對顯微組織和沖擊性能的影響.研究表明,釔基稀土改善了E36鋼的顯微組織,減少了珠光體的片間距和含量.加入釔基稀土后,E36鋼的沖擊斷口由典型的解理斷口變為準解理+韌窩型斷口,韌窩中細小球狀的稀土夾雜是其轉變的主要原因.加入少量的釔基稀土顯著改善了E36鋼的沖擊韌性,尤其是低溫沖擊性能.在-60℃情況下,E36Re鋼的縱向沖擊功較E36鋼提高了33.5%,橫向沖擊功提高了113.7%.并且,釔基稀土顯著改善了E36鋼縱橫向沖擊性能的差異性,未加稀土E36鋼的縱、橫沖擊比均大于1.70,-60℃條件下達到2.77,而E36Re鋼的縱、橫沖擊比為1.51~1.73.Abstract: The effect of Y-base rare earth on the inclusions modification, microstructure and impact toughness of E36 steel was investigated by using scanning electron microscopy and energy spectrum analysis. The results indicate that Y-base rare earth improves the microstructure and reduces the interlamellar spacing and content of pearlite. The typical cleavage fracture of E36 steel is quasi-cleavage and dimple fracture when adding Y-base rare earth. Fine and spherical rare earth inclusions are the main reason for the fracture transformation. The impact toughness of E36 steel is improved obviously by Y-base rare earth, especially at the low temperature. In comparison with E36 steel without Y-base rare earth, the longitudinal impact energy of E36 steel containing Y-base rare earth is increased by 33.5%, and the transverse impact energy is increased by 113.7% at -60℃. Moreover, the difference of longitudinal and transverse impact toughness is decreased by Y-base rare earth significantly. To E36 steel without Y-base rare earth, the proportion of longitudinal and transverse impact values is greater than 1.70 and it reaches 2.77 at -60℃. And the proportion of longitudinal and transverse impact values is 1.51-1.73 for E36 steel plate containing Y-base rare earth.
-
Key words:
- rare earths /
- steel plate /
- microstructure /
- impact toughness
-
參考文獻
[2] Wilson W G, Kay D A R, Vahed A. The use of thermodynamics and phase equilibriums to predict the behavior of the rare earth elements in steel. JOM, 1974, 26(5):14 [3] Luyckx L, Bell J R, McLean A, et al.Sulfide shape control in high strength low alloy steels. Metall Mater Trans B, 1970, 1(12):3341 [4] Alan D, Kay R. High temperature thermodynamics and applications of rare earth oxides and sulphides in ferrous metallurgy.Mineral Processing and Extractive Metallurgy Review:An International Journal, 1992, 10(1):307 [5] Shi L Q, Chen J Z,Northwood D O. Inclusion control in a 16 Mn steel using a combined rare earth and calcium treatment. J Mater Eng, 1991, 13(4):273 [6] Liu H L, Liu C J, Jiang M F. Effect of rare earths on impact toughness of a low-carbon steel.Mater Des, 2012, 33:306 [7] Lan J, He J J, Ding W J, et al. Effect of rare earth metals on the microstructure and impact toughness of a cast 0.4C-5Cr-1.2-Mo-1.0Vsteel. ISIJ Int, 2000, 40(12):1275 [9] Liu X, Liang J L. Effect of rare earth metals on microstructure and impact property of duplex stainless steel.Adv Mater Res, 2013, 662:424 [10] Liu X, Wang L M. Effect of rare earth metals on inclusions and impact property of 2205 duplex stainless steel.Adv Mater Res, 2012, 472-475:411 [14] Li C L, Wang Y S, Chen J J, et al. Effect of rare earth on structure and mechanical properties of clean BNbRE steel.J Rare Earths, 2005, 23(4):470 [15] Liu C J, Huang Y H, Jiang M F. Effects and mechanisms of RE on impact toughness and fracture toughness of clean heavy rail steel.J Iron Steel Res Int, 2011, 18(3):52 [23] Kwon S K, Park J S, Park J H. Influence of refractory steel interfacial reaction on the formation behavior of inclusions in Ce-containing stainless steel. ISIJ Int, 2015, 55(12):2589 -

計量
- 文章訪問數: 630
- HTML全文瀏覽量: 196
- PDF下載量: 44
- 被引次數: 0