Hand-dorsa vein identification based on local macroscopic and microscopic characteristics
-
摘要: 手背靜脈身份識別由于其非接觸和不易被污染等獨特的優勢,已成為各種新型生物特征識別手段中的研究和應用熱點.如何提取具有高鑒別性且魯棒的手背靜脈圖像特征是本文的研究重點.本文簡述了基于局部二值模式(local binary pattern,LBP)的特征提取方法及其改進方法的基本原理,討論分析了其不足,并針對不足,提出了一種多尺度塊中心對稱局部二值模式(multi-scale block center-symmetric LBP,MB-CSLBP)算子.本文所提出的MB-CSLBP算子既考慮圖像的局部宏觀特征,也兼顧圖像的微觀特征,獲取了更加全面的圖像信息.在自建的2040幅近紅外手背靜脈圖像數據庫中,用MB-CSLBP方法獲取圖像特征并使用最近鄰分類器進行識別.大量的對比實驗結果表明,本文所提方法的識別率達到98.21%,優于原始LBP及其改進算子,中心對稱局部二值模式(center-symmetric LBP,CS-LBP)和多尺度塊局部二值模式(multi-scale block LBP,MB-LBP)等.Abstract: As hand-dorsa vein identification is non-contact,not easily polluted,and has other unique advantages,it becomes a new research and application hotspot of biometric identification methods. The focus of this paper is how to extract hand-dorsa vein image characteristics with high identification rate and robustness. This paper briefly describes the basic principle of local binary pattern(LBP) and improved LBP methods,and analyzes the disadvantages of these methods. A novel method called multi-scale block centersymmetric LBP(MB-CSLBP) is proposed. It includes not only the image's microstructures but also macrostructures,which can give more information of the image. This method is tested on a database of 2040 near-infrared hand-dorsa vein images using MB-CSLBP features and a nearest neighbor classifier. A large number of experimental results show that the proposed method offers a better recognition result of 98.21%,outperforming the original LBP and improved LBP operators,such as CS-LBP and MB-LBP.
-
Key words:
- identification /
- hands /
- veins /
- feature extraction /
- macroscopic characteristics /
- microscopic characteristics
-

計量
- 文章訪問數: 155
- HTML全文瀏覽量: 15
- PDF下載量: 6
- 被引次數: 0