Efficient algorithm for real-time mining swarm patterns
-
摘要: 針對實時相關運動模式挖掘應用的需求,提出了一種實時地發現關閉蜂群模式的簇重組算法(CLUR).該算法維護一個候選蜂群模式列表,在每個時間戳采用基于密度的聚類算法對移動目標進行聚類,根據聚類結果組合所有的最大移動目標集,記錄相應的時間集,然后構建候選蜂群模式,并更新到候選列表.算法給出了三種更新規則和一種插入規則,用于實現候選蜂群模式列表的更新,同時降低了候選列表的冗余度,提高了算法的效率.在每個時間戳結束時可通過關閉檢測規則實時地發現當前時刻的關閉蜂群模式.在合成數據上的綜合實驗驗證了CLUR算法的正確性、實時性和高效性,CLUR算法適用于實時相關運動模式挖掘系統.Abstract: Due to urgent demands for real time relative motion patterns mining applications, an efficient cluster-recombinant (CLUR) algorithm for real time discovering closed swarm patterns was proposed. The algorithm maintains a candidate swarm list, and at each timestamp carries out cluster analysis on moving objects using the clustering algorithm based on density, and according to the clustering results it recombines the maximum moving object set and records the corresponding maximum time set, further constructs a candidate swarm pattern and then finally updates the candidate swarm list up to date by using three update rules and an insert rule. The rules greatly reduce the redundancy of the candidate list and improve the efficiency of the algorithm. At the end of each timestamp, the current closed swarm patterns can be real time obtained by closuring checking rules. Comprehensive empirical studies on large synthetic data demonstrate the correctness, real time and efficiency of the CLUR algorithm. The CLUR algorithm can be applicable to real time relative motion pattern mining systems.
-
Key words:
- data mining /
- trajectories /
- clustering algorithms /
- cluster recombination /
- real time systems
-

計量
- 文章訪問數: 213
- HTML全文瀏覽量: 69
- PDF下載量: 6
- 被引次數: 0